早教吧作业答案频道 -->数学-->
设D,E,F分别为三角形ABC的三边BC,CA,AB的中点,则向量EB+向量FC= A、向量AD设D,E,F分别为三角形ABC的三边BC,CA,AB的中点,则向量EB+向量FC=A、向量AD B、1/2向量AD C、1/2向量BC D、向量BC
题目详情
设D,E,F分别为三角形ABC的三边BC,CA,AB的中点,则向量EB+向量FC= A、向量AD
设D,E,F分别为三角形ABC的三边BC,CA,AB的中点,则向量EB+向量FC=
A、向量AD B、1/2向量AD C、1/2向量BC D、向量BC
设D,E,F分别为三角形ABC的三边BC,CA,AB的中点,则向量EB+向量FC=
A、向量AD B、1/2向量AD C、1/2向量BC D、向量BC
▼优质解答
答案和解析
向量EB+向量FC=向量EC+向量CB+向量FB+向量BC
向量CB和向量BC大小相同方向相反相加得0向量
向量EC=1/2向量AC 向量FB=1/2向量AB
向量EB+向量FC=向量EC+向量FB=1/2向量(AB+AC)
向量AB+向量AC=2倍向量AD(平行四边形定则)
所以向量EB+向量FC=向量AD
选A
向量CB和向量BC大小相同方向相反相加得0向量
向量EC=1/2向量AC 向量FB=1/2向量AB
向量EB+向量FC=向量EC+向量FB=1/2向量(AB+AC)
向量AB+向量AC=2倍向量AD(平行四边形定则)
所以向量EB+向量FC=向量AD
选A
看了 设D,E,F分别为三角形AB...的网友还看了以下:
如图为三角形ABC与三角形DEC重叠的情形,其中点E在BC上,AC交DE于点F点,DF长为如图为三 2020-04-05 …
难题急救若函f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)-g(x)=e^x,则f( 2020-04-27 …
(1/2)如图,三角形ABC为等腰直角三角形,AB=AC,D为斜边BC上的中点,E、F分别为AB、 2020-05-24 …
如图,美伊战争中,特种兵在C处发现E,F处各有一股伊军,电传A,B两处的美军,此时,三角形ABC为 2020-07-02 …
如图,三角形abc中,ad垂直bc于d,e、f分别是ab、ac的中点.当三角形abc满足什么条件, 2020-07-06 …
数学分析习题.设函数f(x)在[a,b]上三阶可导,证明:存在一点e∈(a,b)设函数f(x)在[ 2020-07-16 …
如图.在三角形ABC中,F是AB上一点,E、D是AC上的点,EF//BD,DF//BC,在三角形A 2020-07-18 …
填一填,想一想图形顶点数(V)面数(F)棱数(E)V+F-E(1)你能从上表中的三组数据猜测V、F和 2020-11-18 …
化简:3/5a(10a-15b)-1/2b(4a-6b)-2ab填表:顶点数(v)面数(f)棱数(e 2020-11-18 …
在等腰三角形中,角C=90',D是AB中点,E,F分别在AC,BC上滑动且保持CE=BF(1)求证: 2020-12-25 …