早教吧作业答案频道 -->数学-->
如图,在等边△ABC中,点D是BC边的中点,以AD为边作等边△ADE. (1)求∠CAE的度数;(2)取AB边的中点F,连接CF、CE,试证明四边形AFCE是矩形.
题目详情
如图,在等边△ABC中,点D是BC边的中点,以AD为边作等边△ADE.

(1)求∠CAE的度数;
(2)取AB边的中点F,连接CF、CE,试证明四边形AFCE是矩形.

(1)求∠CAE的度数;
(2)取AB边的中点F,连接CF、CE,试证明四边形AFCE是矩形.
▼优质解答
答案和解析
(1) ∵△ABC是等边三角形,且D是BC中点,
∴DA平分∠BAC,即∠DAB=∠DAC=30°;
∵△DAE是等边三角形,
∴∠DAE=60°;
∴∠CAE=∠DAE-∠CAD=30°;
(2)证明:∵△BAC是等边三角形,F是AB中点,
∴CF⊥AB;
∴∠BFC=90°
由(1)知:∠CAE=30°,∠BAC=60°;
∴∠FAE=90°;
∴AE∥CF;
∵△BAC是等边三角形,且AD、CF分别是BC、AB边的中线,
∴AD=CF;
又AD=AE,∴CF=AE;
∴四边形AFCE是平行四边形;
∵∠AFC=∠FAE=90°,
∴四边形AFCE是矩形.

∴DA平分∠BAC,即∠DAB=∠DAC=30°;
∵△DAE是等边三角形,
∴∠DAE=60°;
∴∠CAE=∠DAE-∠CAD=30°;
(2)证明:∵△BAC是等边三角形,F是AB中点,
∴CF⊥AB;
∴∠BFC=90°
由(1)知:∠CAE=30°,∠BAC=60°;
∴∠FAE=90°;
∴AE∥CF;
∵△BAC是等边三角形,且AD、CF分别是BC、AB边的中线,
∴AD=CF;
又AD=AE,∴CF=AE;
∴四边形AFCE是平行四边形;
∵∠AFC=∠FAE=90°,
∴四边形AFCE是矩形.
看了 如图,在等边△ABC中,点D...的网友还看了以下:
如图,在等腰梯形ABCD中,已知AB//BC,AB=DC,AD=2,BC=4,延长BC到E,使CE 2020-05-16 …
在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.按下列要求画图:过点C 2020-05-16 …
如图,已知AB垂直于BC,DC垂直于BC,E在BC上,且AE=AD,AB=BC.试说明:CE=CD 2020-05-17 …
如图,已知四边形ABCD中,角ABC=角ADC=90°,BG⊥AC交CD于点E如图,已知四边形AB 2020-06-27 …
在△ABC中,∠ACB=90°,AC=BC,BD⊥CE,AE⊥CE,垂足分别为D、E,求图中线段D 2020-06-27 …
由反应物微粒一步直接实现k化学反应称为基元反应.某化学反应是通过三步基元反应实现k:①Ce大++M 2020-07-07 …
已知AB=AC,CE垂直AB于E,BD垂直AC于D,求证:BD=CE我没图. 2020-07-16 …
如图1,△ABC中,角BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE的异侧,BD⊥ 2020-11-02 …
如图,在等腰直角三角形中∠BAC=90度,AB=AC,点D是直线上一点过点A作AF⊥BD,过点C作C 2020-12-25 …
如图,在梯形ABCD中,AD//BC,AC与BD交于点O过点C作CE//AB交BD的延长线于点E(1 2020-12-25 …