早教吧作业答案频道 -->数学-->
已知定义在(-∞,0)∪(0,+∞)上的函数f(x)满足f(-x)=f(x),当a,b∈(-∞,0)时总有f(a)−f(b)a−b>0(a≠b),若f(m+1)>f(2m),则实数m的取值范围是.
题目详情
已知定义在(-∞,0)∪(0,+∞)上的函数f(x)满足f(-x)=f(x),当a,b∈(-∞,0)时总有
>0(a≠b),若f(m+1)>f(2m),则实数m的取值范围是______.
| f(a)−f(b) |
| a−b |
▼优质解答
答案和解析
∵定义在(-∞,0)∪(0,+∞)上的函数f(x)满足f(-x)=f(x),
∴f(x)是偶函数,且f(-x)=f(x)=f(|x|).
∵当a,b∈(-∞,0)时总有
>0(a≠b),
∴f(x)在(-∞,0)上单调递增,
∴f(x)在(0,+∞)上单调递减.
∵f(m+1)>f(2m),
∴f(|m+1|)>f(|2m|),
∴0<|m+1|<|2m|,
∴4m2>(m+1)2>0,
∴
,
∴m<-1或−1<m<−
或m>1.
∴实数m的取值范围是(−∞,−1)∪(−1,−
)∪(1,+∞).
故答案为:(−∞,−1)∪(−1,−
)∪(1,+∞).
∴f(x)是偶函数,且f(-x)=f(x)=f(|x|).
∵当a,b∈(-∞,0)时总有
| f(a)−f(b) |
| a−b |
∴f(x)在(-∞,0)上单调递增,
∴f(x)在(0,+∞)上单调递减.
∵f(m+1)>f(2m),
∴f(|m+1|)>f(|2m|),
∴0<|m+1|<|2m|,
∴4m2>(m+1)2>0,
∴
|
∴m<-1或−1<m<−
| 1 |
| 3 |
∴实数m的取值范围是(−∞,−1)∪(−1,−
| 1 |
| 3 |
故答案为:(−∞,−1)∪(−1,−
| 1 |
| 3 |
看了 已知定义在(-∞,0)∪(0...的网友还看了以下:
已知函数f(x)=a㏑x+x2(a为实常数)(1)若a=-2,求证:函数f(x)在(1,+∽)上是 2020-05-13 …
已知函数f(x)=X+a÷x(x≠0,常数a∈R)若函数f(x)在X∈2,正无穷)上为增函数,求a 2020-05-13 …
请在这里概述您的问题问一道数学题步骤,表示没看懂已知函数f(x)=x^2+a/x(x≠0,常数a∈ 2020-05-13 …
已知函数f(x)=X?+a÷x(x≠0,常数a∈R)若函数f(x)在X∈2,正无穷)上为增函数,求 2020-05-13 …
求证:函数y=f(a+x)与函数y=f(a-x)关于x=0对称,其中x∈R求证:函数y=f(a+x 2020-05-16 …
导数 y=a^x导数证明中的步骤y=a^x,Δy=a^(x+Δx)-a^x=a^x(a^Δx-1) 2020-05-17 …
问一道高一指数函数的题目(1)求证:f(x)=(a^x-a^-x)/2(a>0,且a≠1)是奇函数 2020-06-09 …
如果存在正实数a,使得f(x-a)为奇函数,f(x+a)为偶函数,我们称函数f(x)为亲和函数,则 2020-06-09 …
高数导数问题.设f(x)=(e^x-e^a)g(x)在x=a处可导,则函数g(x)应该满足条件是? 2020-07-20 …
文科函数,急1函数f(x)=x^3-a^x-1,若f(x)在实数集R上单调递增,求实数a的取值范围? 2020-11-21 …