早教吧作业答案频道 -->数学-->
已知定义在(-∞,0)∪(0,+∞)上的函数f(x)满足f(-x)=f(x),当a,b∈(-∞,0)时总有f(a)−f(b)a−b>0(a≠b),若f(m+1)>f(2m),则实数m的取值范围是.
题目详情
已知定义在(-∞,0)∪(0,+∞)上的函数f(x)满足f(-x)=f(x),当a,b∈(-∞,0)时总有
>0(a≠b),若f(m+1)>f(2m),则实数m的取值范围是______.
f(a)−f(b) |
a−b |
▼优质解答
答案和解析
∵定义在(-∞,0)∪(0,+∞)上的函数f(x)满足f(-x)=f(x),
∴f(x)是偶函数,且f(-x)=f(x)=f(|x|).
∵当a,b∈(-∞,0)时总有
>0(a≠b),
∴f(x)在(-∞,0)上单调递增,
∴f(x)在(0,+∞)上单调递减.
∵f(m+1)>f(2m),
∴f(|m+1|)>f(|2m|),
∴0<|m+1|<|2m|,
∴4m2>(m+1)2>0,
∴
,
∴m<-1或−1<m<−
或m>1.
∴实数m的取值范围是(−∞,−1)∪(−1,−
)∪(1,+∞).
故答案为:(−∞,−1)∪(−1,−
)∪(1,+∞).
∴f(x)是偶函数,且f(-x)=f(x)=f(|x|).
∵当a,b∈(-∞,0)时总有
f(a)−f(b) |
a−b |
∴f(x)在(-∞,0)上单调递增,
∴f(x)在(0,+∞)上单调递减.
∵f(m+1)>f(2m),
∴f(|m+1|)>f(|2m|),
∴0<|m+1|<|2m|,
∴4m2>(m+1)2>0,
∴
|
∴m<-1或−1<m<−
1 |
3 |
∴实数m的取值范围是(−∞,−1)∪(−1,−
1 |
3 |
故答案为:(−∞,−1)∪(−1,−
1 |
3 |
看了 已知定义在(-∞,0)∪(0...的网友还看了以下:
求证:函数y=f(a+x)与函数y=f(a-x)关于x=0对称,其中x∈R求证:函数y=f(a+x 2020-05-16 …
求证几个函数对称定理!50待加.1.函数f(x)定义域为R.求证y=f(x-m)与y=f(m-x) 2020-06-06 …
一道高中数学题(函数)满意加分证明:1.若F(X)对任意实数X,都有F(A+X)=F(B-X)则F 2020-06-06 …
如果存在正实数a,使得f(x-a)为奇函数,f(x+a)为偶函数,我们称函数f(x)为亲和函数,则 2020-06-09 …
函数y=f(x)对定义域内的任意X都有f(a+x)=f(a-x),则y=f(x)的图像关于直线x= 2020-06-25 …
高数导数问题.设f(x)=(e^x-e^a)g(x)在x=a处可导,则函数g(x)应该满足条件是? 2020-07-20 …
函数对称性问题f(a+x)=f(a-x)是说明这个函数f(x)关于直线x=a对称,而函数y=f(a 2020-08-01 …
(1)若函数f(X)满足f(x+a)=f(x-a),则f(x)为周期函数,丨2a丨为它的一个周期(1 2020-11-06 …
若一个函数关于x=a对称,则有f(x)=f(2a-x).如何得来若函数y=f(x)的图象关于直线x= 2020-11-08 …
(1)函数f(x+a)与函数f(a-x)的图像关于对称,(2)函数f(x-a)与函数f(a-x)的图 2020-11-18 …