早教吧作业答案频道 -->数学-->
如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°
题目详情
如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:
①四边形AEGF是菱形
②△AED≌△GED
③∠DFG=112.5°
④BC+FG=1.5
其中正确的结论是___.

①四边形AEGF是菱形
②△AED≌△GED
③∠DFG=112.5°
④BC+FG=1.5
其中正确的结论是___.

▼优质解答
答案和解析
证明:∵四边形ABCD是正方形,
∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,
∵△DHG是由△DBC旋转得到,
∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,
在RT△ADE和RT△GDE中,
,
∴AED≌△GED,故②正确,
∴∠ADE=∠EDG=22.5°,AE=EG,
∴∠AED=∠AFE=67.5°,
∴AE=AF,同理EG=GF,
∴AE=EG=GF=FA,
∴四边形AEGF是菱形,故①正确,
∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正确.
∵AE=FG=EG=BG,BE=
AE,
∴BE>AE,
∴AE<
,
∴CB+FG<1.5,故④错误.
故答案为①②③.

∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,
∵△DHG是由△DBC旋转得到,
∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,
在RT△ADE和RT△GDE中,
|
∴AED≌△GED,故②正确,
∴∠ADE=∠EDG=22.5°,AE=EG,
∴∠AED=∠AFE=67.5°,
∴AE=AF,同理EG=GF,
∴AE=EG=GF=FA,
∴四边形AEGF是菱形,故①正确,
∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正确.
∵AE=FG=EG=BG,BE=
2 |
∴BE>AE,
∴AE<
1 |
2 |
∴CB+FG<1.5,故④错误.
故答案为①②③.
看了 如图,正方形ABCD的边长为...的网友还看了以下:
求一数列.高2.a(n+1)=2an/2an+1已知a1=1a(n+1)=2an/2an+1求数列 2020-04-25 …
用matlab求最短距离时出现问题,function [D,path,min1,path1]=fl 2020-05-17 …
求∫(arctanx/x^2)dx,下面是我算的,答案怎么是(-1/x)*arctanx-(1/2 2020-05-17 …
记数列{an}的前n项和为Sn,若{Sn/an}是公差为d的等差数列,则{an}为等差数列时d=解 2020-05-23 …
已知整数a,b,c,d满足abcd=6(a-1)(b-1)(c-1)(d-1)(1)是否存在满足上 2020-06-03 …
求解a(1/b+1/c+1/d)+b(1/a+1/c+1/d)+c(1/b+1/a+1/d)+d( 2020-06-12 …
不好意思打扰下~可以请问下在这个问题中P和P^-1为什么不用进行幂运算?为什么只有D变成D^11? 2020-06-24 …
若有以下程序#include“stdio.h”main(){inta=1,b=2,c=3,d=4; 2020-07-23 …
1/x(1+2lnx)dx的不定积分1/[x(1+2Inx)]dx的不定积分=(1/2)*{1/(1 2020-10-31 …
谁能介绍一下呢=INDIRECT("A"&INDEX(A$4:A$49,SMALL(IF(INDIR 2020-11-01 …