早教吧作业答案频道 -->其他-->
(2014•下城区一模)任意抛掷一枚均匀的骰子(各个面上的点数为1-6),将第一次,第二次抛掷的点数分别记为m,n(1)求m=n的概率P1.(2)求m+n为奇数的概率P2.(3)在平面直角坐标系中
题目详情
(2014•下城区一模)任意抛掷一枚均匀的骰子(各个面上的点数为1-6),将第一次,第二次抛掷的点数分别记为m,n(1)求m=n的概率P1.
(2)求m+n为奇数的概率P2.
(3)在平面直角坐标系中,求以(1,1)(2,0)(m,n)为顶点能构成直角三角形的概率P3.
▼优质解答
答案和解析
列表得:
则共有36种等可能的结果;
(1)∵m=n的有6种情况,
∴P1=
=
;
(2)∵m+n为奇数的有18种情况,
∴P2=
=
;
(3)∵能构成直角三角形的顶点坐标为(1,1)、(2,2)、(3,3)、(4,4)、(5,5)、(6,6);(2,1);(3,1)、(4,2)、(5,3)、(6,4)共11个,
∴P3=
.
| 6 | (1,6) | (2,6) | (3,6) | (4,6) | (5,6) | (6,6) |
| 5 | (1,5) | (2,5) | (3,5) | (4,5) | (5,5) | (6,5) |
| 4 | (1,4) | (2,4) | (3,4) | (4,4) | (5,4) | (6,4) |
| 3 | (1,3) | (2,3) | (3,3) | (4,3) | (5,3) | (6,3) |
| 2 | (1,2) | (2,2) | (3,2) | (4,2) | (5,2) | (6,2) |
| 1 | (1,1) | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) |
| 1 | 2 | 3 | 4 | 5 | 6 |
(1)∵m=n的有6种情况,
∴P1=
| 1 |
| 36 |
| 1 |
| 6 |
(2)∵m+n为奇数的有18种情况,
∴P2=
| 18 |
| 36 |
| 1 |
| 2 |
(3)∵能构成直角三角形的顶点坐标为(1,1)、(2,2)、(3,3)、(4,4)、(5,5)、(6,6);(2,1);(3,1)、(4,2)、(5,3)、(6,4)共11个,
∴P3=
| 11 |
| 36 |
看了 (2014•下城区一模)任意...的网友还看了以下:
同时抛15枚均匀硬币,出现正面向上为奇数枚的概率为PP=P(1,15)+P(3,15)+.P(15 2020-04-25 …
一人有n把钥匙,其中只有一把可把房门打开,逐个试验钥匙,房门恰好在第k次被打开(1≤k≤n)的概率 2020-05-15 …
袋子中装有红、黄、蓝三种颜色的球各8枚,从中任意取出12个,其中有红3枚、黄4枚、蓝5枚的概率是多 2020-05-16 …
一道关于五子棋的数学题,很难的?话说在在15乘15的棋盘上,黑棋先走,随即落子的情况下,黑棋形成5 2020-06-27 …
已知概率99.9%发生N次的概率是95.2%,求N..--..计算器怎么算的... 2020-07-22 …
关于概率的问题一件事做一次的成功率为P,做n次,这n次中,成功k(k≤n)次的概率是多少?可以不用给 2020-11-03 …
将n只球随机放入m个杯中(n≤m)求杯中球的最大个数为a(a≤n)的概率本人不才 2020-11-15 …
连续投掷两枚质地均匀的骰子设第一枚向上的点数为m,第二枚向上的点数为n.(1)m+n=7的概率(2) 2020-11-18 …
同时抛掷15枚均匀的硬币一次(1)试求至多有1枚正面向上的概率;(2)试问出现正面向上为奇数枚的概率 2020-12-03 …
同时抛掷15枚均匀的硬币一次(1)试求至多有1枚正面向上的概率;(2)试问出现正面向上为奇数枚的概率 2020-12-14 …