早教吧作业答案频道 -->其他-->
设函数fn(x)(n=1,2,…)在[0,1]上连续,在(0,1)内可导,并且{fn(x)}在[0,1]上一致有界,{f′n(x)}在(0,1)上一致有界,证明:函数列fn(x)有一致收敛的子列.
题目详情
设函数fn(x)(n=1,2,…)在[0,1]上连续,在(0,1)内可导,并且{fn(x)}在[0,1]上一致有界,{f′n(x)}在(0,1)上一致有界,证明:函数列fn(x)有一致收敛的子列.
▼优质解答
答案和解析
因为{fn(x)}在[0,1]上一致有界,{f′n(x)}在(0,1)上一致有界,
不妨设|fn(x)|≤M,|f′n(x)|≤M,
所以∀ɛ>0,∃δ=
,当|x-y|<δ时,
|fn(x)-fn(y)|=|f′(ξ)||x-y|≤M•
=
<
.
对于上面的δ,设M=[
]+1,
xk=x0+kδ,k=0,…,M-1,
xM=1.
对于x0,{fn(x0)}有界,故存在收敛子列{f0n(x0)};
对于x1,{f0n(x1)}有界,故存在收敛子列{f1n(x1)};
…,
对于xM,{f(M−1)n(xM)}有界,故存在收敛子列{fMn(xM)}.
对于子列{fMn(x)},由于{fMn(xk)}(k=0,…,M)均收敛,
故∀k∈{0,1,…,M},∃Nk>0(Nk只依赖于ɛ),当Mn>Nk时,∀P>0,
|fMn+p(xk)−fMn(xk)|<
;
再注意到其连续性,
∀x∈[0,1),∃k∈{0,1,…,M},使得|x-xk|<δ,
从而,|fMn+p(x)−fMn+p(xk)|<
,|fMn(xk)−fMn(x)|<
.
因此,取N=max{N0,…,NM}(N只依赖于ɛ),则当Mn>N时,
|fMn+p(x)−fMn(x)|
≤|fMn+p(x)−fM
不妨设|fn(x)|≤M,|f′n(x)|≤M,
所以∀ɛ>0,∃δ=
| ɛ |
| 6M |
|fn(x)-fn(y)|=|f′(ξ)||x-y|≤M•
| ɛ |
| 6M |
| ɛ |
| 6 |
| ɛ |
| 3 |
对于上面的δ,设M=[
| 1 |
| δ |
xk=x0+kδ,k=0,…,M-1,
xM=1.
对于x0,{fn(x0)}有界,故存在收敛子列{f0n(x0)};
对于x1,{f0n(x1)}有界,故存在收敛子列{f1n(x1)};
…,
对于xM,{f(M−1)n(xM)}有界,故存在收敛子列{fMn(xM)}.
对于子列{fMn(x)},由于{fMn(xk)}(k=0,…,M)均收敛,
故∀k∈{0,1,…,M},∃Nk>0(Nk只依赖于ɛ),当Mn>Nk时,∀P>0,
|fMn+p(xk)−fMn(xk)|<
| ɛ |
| 3 |
再注意到其连续性,
∀x∈[0,1),∃k∈{0,1,…,M},使得|x-xk|<δ,
从而,|fMn+p(x)−fMn+p(xk)|<
| ɛ |
| 3 |
| ɛ |
| 3 |
因此,取N=max{N0,…,NM}(N只依赖于ɛ),则当Mn>N时,
|fMn+p(x)−fMn(x)|
≤|fMn+p(x)−fM
看了 设函数fn(x)(n=1,2...的网友还看了以下:
高数改错已知二元函数f(x,y)x=0或y=0时函数值为1,其它所有点函数值为0.因为(0,0)处 2020-05-14 …
2004年考研数一第八题,原题:设函数f(x)连续,且f’(0)>0,则存在δ>0,使得选(C)( 2020-06-11 …
设函数fn(x)(n=1,2,…)在[0,1]上连续,在(0,1)内可导,并且{fn(x)}在[0 2020-06-23 …
已知f(x)在有限开区间(a,b)上一致连续,求证f(x)在(a,b)上有界 2020-08-01 …
若函数f(x)在有界半开区间(a,b]中一致连续,试证:函数f(x)在有限点a处的右极 2020-08-01 …
果蝇体细胞中含一条X染色体的是雄性(如6+X,6+XYY等),含2条X染色体的是雌性(如6+XXY等 2020-11-02 …
一道数学分析,一致连续的问题函数f(x)在全体实数上一致连续,证明存在正数A,B使得,对任意的实数x 2020-11-17 …
(2014•龙岩模拟)果蝇体细胞中含一条X染色体的是雄性(如6+X、6+XYY等),含两条X染色体的 2021-01-12 …
已知果蝇是XY型性别决定,体细胞中含一条X染色体的是雄性(如6+XY,6+X,6+XYY,其中6+X 2021-01-12 …
1.设f(x)=x|x|,则f'(0)=2.若曲线y=h(x)在点p(a,h(a))处的且线方程为2 2021-01-13 …