早教吧作业答案频道 -->其他-->
如图,AD是⊙O的直径,过⊙O上一点E作直线L,交AD的延长线于点B,AC⊥L于点C,AC交⊙O于点G,E为劣弧GD的中点.(1)求证:BC是⊙O的切线;(2)若AG=6,CE=4,求⊙O的半径.
题目详情

(1)求证:BC是⊙O的切线;
(2)若AG=6,CE=4,求⊙O的半径.
▼优质解答
答案和解析
(1)证明:连接OE,GD交于F.
∵AD是⊙O的直径,
∴OE=OA,
∴∠OEA=∠OAE,
∵E为劣弧GD的中点,
∴
=
,
∴∠GAE=∠OAE,
∴∠OEA=∠GAE,
∴OE∥AC,
又AC⊥BC,
∴OE⊥BC.
又OE是⊙O的半径,
∴BC是⊙O的切线;
(2)设⊙O的半径是r.
由(1)知,OE⊥BC,
∵AD是圆O的直径,
∴∠AGD=90°,
∴AG⊥GD.
∵AC⊥BC,
∴GD∥BC.
∴四边形GCEF是矩形,则则CE=GF=4.
∵OE是半径,GD是非直径的弦,
∴GF=FD=4,GD=8.
∵AG=6,
∴AD=10,半径为5.
即⊙O的半径是5.

∵AD是⊙O的直径,
∴OE=OA,
∴∠OEA=∠OAE,
∵E为劣弧GD的中点,
∴
![]() |
GE |
![]() |
ED |
∴∠GAE=∠OAE,
∴∠OEA=∠GAE,
∴OE∥AC,
又AC⊥BC,
∴OE⊥BC.
又OE是⊙O的半径,
∴BC是⊙O的切线;
(2)设⊙O的半径是r.
由(1)知,OE⊥BC,
∵AD是圆O的直径,
∴∠AGD=90°,
∴AG⊥GD.
∵AC⊥BC,
∴GD∥BC.

∴四边形GCEF是矩形,则则CE=GF=4.
∵OE是半径,GD是非直径的弦,
∴GF=FD=4,GD=8.
∵AG=6,
∴AD=10,半径为5.
即⊙O的半径是5.
看了 如图,AD是⊙O的直径,过⊙...的网友还看了以下:
如何证明线面垂直定理就是一条直线垂直于平面内两个直线,那么这条直线垂直于这个平面.定义:如果一条直 2020-05-13 …
已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点 2020-05-16 …
如图,AB是O的直径,C、G是O上两点,且C是弧AG的中点,过点C的直线CD⊥BG的延长线于点D, 2020-06-13 …
(2014•巴中)如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过 2020-06-17 …
导数证明题设函数f(x)在[-2,2]上连续,在(-2,2)内可导,且f(-2)=0,f(0)=2 2020-07-16 …
如图,P是菱形ABC尸对角线BD上一点,连接CP并延长,交AD于E,交BA延长线于F.(1)求证如 2020-07-16 …
在三角形ABC中,角A角B的平分线分别交对边于D,E角C的外角平分线交对边延长线于F,求证:D、E 2020-08-03 …
如图,在△ABC中,AB=AC,AD⊥BC于点D,点P在BC上,PE⊥BC,交BA的延长线于点E, 2020-08-03 …
如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E 2020-11-03 …
如图点0在角APB的角平分线上圆0与PA相切于点C求证直线PB与圆O相切,PO的延长线与圆0交于点E 2021-01-11 …