早教吧作业答案频道 -->数学-->
曲线积分题,被积函数是y的绝对值,积分曲线是双纽线(x^2+y^2)^2=2a^2(x^2-y^2),请问怎么算……
题目详情
曲线积分题,被积函数是y的绝对值,积分曲线是双纽线(x^2+y^2)^2=2a^2(x^2-y^2),请问怎么算……
▼优质解答
答案和解析
本题要用极坐标,需要知道双纽线的图形,见下图:

曲线关于两坐标轴均对称,且|y|关于x和y均为偶函数,因此用两次奇偶对称性可得:原积分=4∫ y ds 积分曲线为图中第一象限部分.下面写出双纽线的极坐标方程,r⁴=2a²(r²cos²θ-r²sin²θ),整理得:r²=2a²cos2θ,θ:0--->π/4计算r'(θ):r²=2a²cos2θ两边对θ求导得2rr'=-4a²sin2θ,因此:r'=-(2a²sin2θ)/r则:(r')²=(2a²sin2θ)²/r²=(2a²sin2θ)²/2a²cos2θ=2a²sin²2θ/cos2θ计算ds=√[r²+(r')²]dθ=√[2a²cos2θ+2a²sin²2θ/cos2θ]dθ=(√2a)*√(sec2θ)dθ因此原积分=4∫ y ds=4(√2a)∫[0--->π/4] rsinθ√(sec2θ)dθ由r²=2a²cos2θ得:r=(√2a)√(cos2θ),代入上式=8a²∫[0--->π/4] sinθdθ=-8a²cosθ |[0--->π/4]=8a²(1-√2/2)=4a²(2-√2)

曲线关于两坐标轴均对称,且|y|关于x和y均为偶函数,因此用两次奇偶对称性可得:原积分=4∫ y ds 积分曲线为图中第一象限部分.下面写出双纽线的极坐标方程,r⁴=2a²(r²cos²θ-r²sin²θ),整理得:r²=2a²cos2θ,θ:0--->π/4计算r'(θ):r²=2a²cos2θ两边对θ求导得2rr'=-4a²sin2θ,因此:r'=-(2a²sin2θ)/r则:(r')²=(2a²sin2θ)²/r²=(2a²sin2θ)²/2a²cos2θ=2a²sin²2θ/cos2θ计算ds=√[r²+(r')²]dθ=√[2a²cos2θ+2a²sin²2θ/cos2θ]dθ=(√2a)*√(sec2θ)dθ因此原积分=4∫ y ds=4(√2a)∫[0--->π/4] rsinθ√(sec2θ)dθ由r²=2a²cos2θ得:r=(√2a)√(cos2θ),代入上式=8a²∫[0--->π/4] sinθdθ=-8a²cosθ |[0--->π/4]=8a²(1-√2/2)=4a²(2-√2)
看了 曲线积分题,被积函数是y的绝...的网友还看了以下:
(1)已知函数f(x)=ax^2+c,且f'(1)=2,则a值为?(2)曲线y=e^(1)已知函数 2020-05-14 …
设函数f(x)=x^2-alnx与g(x)=(1/a)x-√x的图像分别交直线x=1于点A、B,且 2020-05-15 …
函数f(x)=alnx-2ax+3.函数y=f(x)的图像在x=2处得切线斜率为1.5,若函数g( 2020-05-15 …
f(x)=1/3x^3-1/2(2a+1)x^2+(a^2+a)x(1)h(x)=f'(x)/x为 2020-06-03 …
直线1:x+√3y-1=0与直线2:x+y-1=0的夹角? 2020-06-04 …
当a取不同实数时,直线(2+a)x+(a-1)y+3a=0恒过一个定点,这个定点的坐标为__如题 2020-06-27 …
已知直线ab坐标:a(210)b(310)曲线1函数y=ax平方曲线2函数y=2分之一x平方a大于 2020-07-09 …
(1/2)设函数f(x)=x3-3ax+b,若曲线y=f(x)在点(2,f(2))处与直线y=8相 2020-07-22 …
高考已知函数f(x)=a(x-1)/x^2,其中a>0求函数f(x)的单调区间.若直线x-y-1= 2020-08-02 …
对任意的实数λ,直线(2+λ)x-(1+λ)y-2(3+2λ)=0与点P(-2,2)的距离为d,求d 2020-11-12 …