早教吧作业答案频道 -->数学-->
问题情境如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为
题目详情
问题情境
如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为yE,yF.
特例探究
填空:
当m=1,n=2时,yE=______,yF=______;
当m=3,n=5时,yE=______,yF=______.
归纳证明
对任意m,n(n>m>0),猜想yE与yF的大小关系,并证明你的猜想.
拓展应用

(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出yE与yF的大小关系;
(2)连接EF,AE.当S四边形OFEB=3S△OFE时,直接写m与n的大小关系及四边形OFEA的形状.
如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为yE,yF.
特例探究
填空:
当m=1,n=2时,yE=______,yF=______;
当m=3,n=5时,yE=______,yF=______.
归纳证明
对任意m,n(n>m>0),猜想yE与yF的大小关系,并证明你的猜想.
拓展应用

(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出yE与yF的大小关系;
(2)连接EF,AE.当S四边形OFEB=3S△OFE时,直接写m与n的大小关系及四边形OFEA的形状.
▼优质解答
答案和解析
【特例探究】
当m=1,n=2时,A(1,0)、B(2,0)、C(1,1)、D(2,4);
则:直线OC:y=x;直线OD:y=2x;
∴F(1,2)、E(2,2);
即:yE=yF=2.
同理:当m=3,n=5时,yE=yF=15.
【归纳证明】
猜想:yE=yF;
证明:点A(m,0),B(n,0)(n>m>0).
由抛物线的解析式知:C(m,m2)、D(n,n2);
设直线OC的解析式:y=kx,代入点C的坐标:
km=m2,k=m
即:直线OC:y=mx;
同理:直线OD:y=nx.
∴E(n,mn)、F(m,mn)
即yE=yF.
【拓展应用】
(1)yE=yF.证法同(2),不再复述.
(2)n=2m,
综合上面的结论,可得出E、F的纵坐标相同,即EF∥x轴,则四边形ABEF是矩形;
∵S四边形OFEB=3S△OFE,
∴
(FE+OB)•BE=3×
FE•BE,
∴OB=2FE,
∵OA=m,OB=n,
∴AB=EF=n-m
∴n=2(n-m),
∴n=2m,
∵四边形ABEF是矩形,
∴FE=AB,
∴OA=OB-AB=2FE-FE=FE,
又∵EF∥x轴,
∴四边形OEFA是平行四边形.
当m=1,n=2时,A(1,0)、B(2,0)、C(1,1)、D(2,4);
则:直线OC:y=x;直线OD:y=2x;
∴F(1,2)、E(2,2);
即:yE=yF=2.
同理:当m=3,n=5时,yE=yF=15.
【归纳证明】
猜想:yE=yF;
证明:点A(m,0),B(n,0)(n>m>0).
由抛物线的解析式知:C(m,m2)、D(n,n2);
设直线OC的解析式:y=kx,代入点C的坐标:
km=m2,k=m
即:直线OC:y=mx;
同理:直线OD:y=nx.
∴E(n,mn)、F(m,mn)
即yE=yF.
【拓展应用】
(1)yE=yF.证法同(2),不再复述.
(2)n=2m,综合上面的结论,可得出E、F的纵坐标相同,即EF∥x轴,则四边形ABEF是矩形;
∵S四边形OFEB=3S△OFE,
∴
| 1 |
| 2 |
| 1 |
| 2 |
∴OB=2FE,
∵OA=m,OB=n,
∴AB=EF=n-m
∴n=2(n-m),
∴n=2m,
∵四边形ABEF是矩形,
∴FE=AB,
∴OA=OB-AB=2FE-FE=FE,
又∵EF∥x轴,
∴四边形OEFA是平行四边形.
看了 问题情境如图,在x轴上有两点...的网友还看了以下:
已知抛物线Y等于aX²—2X+c与它的对称轴相较于点A(1,-4),与y轴交与点C,与X轴正半轴交 2020-05-16 …
已知抛物线y=ax^2-2x+c与它的对称轴相交与点A(1,-4),与y轴交于点C,与x轴正半轴交 2020-05-16 …
如图,在平面直角坐标系中,四边形ABCD是等腰梯形,AD平行BC,AB=DC,BC在x轴上,点A在 2020-05-17 …
矩形ABCD的顶点A与坐标原点重合,AB,CD分别在x轴.y轴的正半轴上,点B的坐标为(1,0)点 2020-05-20 …
某次考试,A.B.C.D四人的成绩如下:A.B.C平均分:91分B.C.D平均分:89分A.D平均 2020-05-20 …
越野汽车可按驱动轴数分为双轴、三轴和四轴驱动,则6×6为( )。A.四轴B.不能判断C.双轴D.三轴 2020-05-31 …
如图,平面直角坐标系中有一边长3的正六边形OABCDE,O为原点,点A,D分别在x轴,y轴上,点A 2020-06-06 …
下面关于同轴电缆,叙述不正确的是.A)同轴电缆由内芯和屏蔽层构成的一对导体组成.B)同轴电缆分为基 2020-07-06 …
下列说法错误的是()a,轴对称图形的对应线段相等对应点相等.B,成轴对称的的两个图形对应点的连线被 2020-08-01 …
英语翻译基于C8051F020单片机的双积分A/D转换器设计(山东省电子产品监督检验所山东省济南市2 2020-12-01 …