早教吧作业答案频道 -->数学-->
问题情境如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为
题目详情
问题情境
如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为yE,yF.
特例探究
填空:
当m=1,n=2时,yE=______,yF=______;
当m=3,n=5时,yE=______,yF=______.
归纳证明
对任意m,n(n>m>0),猜想yE与yF的大小关系,并证明你的猜想.
拓展应用

(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出yE与yF的大小关系;
(2)连接EF,AE.当S四边形OFEB=3S△OFE时,直接写m与n的大小关系及四边形OFEA的形状.
如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为yE,yF.
特例探究
填空:
当m=1,n=2时,yE=______,yF=______;
当m=3,n=5时,yE=______,yF=______.
归纳证明
对任意m,n(n>m>0),猜想yE与yF的大小关系,并证明你的猜想.
拓展应用

(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出yE与yF的大小关系;
(2)连接EF,AE.当S四边形OFEB=3S△OFE时,直接写m与n的大小关系及四边形OFEA的形状.
▼优质解答
答案和解析
【特例探究】
当m=1,n=2时,A(1,0)、B(2,0)、C(1,1)、D(2,4);
则:直线OC:y=x;直线OD:y=2x;
∴F(1,2)、E(2,2);
即:yE=yF=2.
同理:当m=3,n=5时,yE=yF=15.
【归纳证明】
猜想:yE=yF;
证明:点A(m,0),B(n,0)(n>m>0).
由抛物线的解析式知:C(m,m2)、D(n,n2);
设直线OC的解析式:y=kx,代入点C的坐标:
km=m2,k=m
即:直线OC:y=mx;
同理:直线OD:y=nx.
∴E(n,mn)、F(m,mn)
即yE=yF.
【拓展应用】
(1)yE=yF.证法同(2),不再复述.
(2)n=2m,
综合上面的结论,可得出E、F的纵坐标相同,即EF∥x轴,则四边形ABEF是矩形;
∵S四边形OFEB=3S△OFE,
∴
(FE+OB)•BE=3×
FE•BE,
∴OB=2FE,
∵OA=m,OB=n,
∴AB=EF=n-m
∴n=2(n-m),
∴n=2m,
∵四边形ABEF是矩形,
∴FE=AB,
∴OA=OB-AB=2FE-FE=FE,
又∵EF∥x轴,
∴四边形OEFA是平行四边形.
当m=1,n=2时,A(1,0)、B(2,0)、C(1,1)、D(2,4);
则:直线OC:y=x;直线OD:y=2x;
∴F(1,2)、E(2,2);
即:yE=yF=2.
同理:当m=3,n=5时,yE=yF=15.
【归纳证明】
猜想:yE=yF;
证明:点A(m,0),B(n,0)(n>m>0).
由抛物线的解析式知:C(m,m2)、D(n,n2);
设直线OC的解析式:y=kx,代入点C的坐标:
km=m2,k=m
即:直线OC:y=mx;
同理:直线OD:y=nx.
∴E(n,mn)、F(m,mn)
即yE=yF.
【拓展应用】
(1)yE=yF.证法同(2),不再复述.
(2)n=2m,综合上面的结论,可得出E、F的纵坐标相同,即EF∥x轴,则四边形ABEF是矩形;
∵S四边形OFEB=3S△OFE,
∴
| 1 |
| 2 |
| 1 |
| 2 |
∴OB=2FE,
∵OA=m,OB=n,
∴AB=EF=n-m
∴n=2(n-m),
∴n=2m,
∵四边形ABEF是矩形,
∴FE=AB,
∴OA=OB-AB=2FE-FE=FE,
又∵EF∥x轴,
∴四边形OEFA是平行四边形.
看了 问题情境如图,在x轴上有两点...的网友还看了以下:
如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物 2020-05-14 …
已知P是抛物线y=2倍(x-2)的平方的对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x 2020-05-16 …
初中数学,在直角坐标系中,直线L:Y=,-2x+4分别交x轴点A,直线Y=X与直线L交于点B初中数 2020-06-06 …
问题情境如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线 2020-06-21 …
在直角座标系xoy中日长为根号2加1的线段的两端点的C、D分别在x轴y轴上滑...在直角座标系xo 2020-07-31 …
如图,已知抛物线y1=-x2+1,直线y2=-x+1,当x任取一值时,x对应的函数值分别为y1,y 2020-08-01 …
已知曲线C1:f(x)=x^2+e^2,C2:g(x)=2e^2lnx(1)证明;当x>0时,f( 2020-08-01 …
高二数学一道解析几何问题要过程求高手解答将平面内动点M到两条直线l1,l2的距离分别记作d1,d2 2020-08-02 …
对于平面直角坐标系中的任意点P(x,y),点P到x,y轴的距离分别为d1,d2我们把d1+d2称为点 2020-10-31 …
(2013•衡水二模)如图,已知抛物线y1=-x2+1,直线y2=-x+1,当x任取一值时,x对应的 2020-11-12 …