早教吧作业答案频道 -->数学-->
(2014•福建模拟)定义:如果对任意一个三角形,只要它的三边长a,b,c都在函数f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”
题目详情
(2014•福建模拟)定义:如果对任意一个三角形,只要它的三边长a,b,c都在函数f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.若函数h(x)=lnx(x∈[M,+∞))是保三角形函数,求M的最小值为______.
▼优质解答
答案和解析
首先证明当M≥2时,函数h(x)=lnx (x∈[M,+∞))是保三角形函数.
对任意一个三角形三边长a,b,c∈[M,+∞),且a+b>c,b+c>a,c+a>b,
则h(a)=lna,h(b)=lnb,h(c)=lnc.
因为a≥2,b≥2,a+b>c,所以(a-1)(b-1)≥1,所以ab≥a+b>c,所以lnab>lnc,
即lna+lnb>lnc.
同理可证明lnb+lnc>lna,lnc+lna>lnb.
所以lna,lnb,lnc是一个三角形的三边长.
故函数h(x)=lnx (x∈[M,+∞),M≥2),是保三角形函数…13分
(ii)其次证明当0<M<2时,h(x)=lnx(x∈[M,+∞))不是保三角形函数,
因为0<M<2,所以M+M=2M>M2,所以M,M,M2是某个三角形的三条边长,
而lnM+lnM=2lnM=lnM2,所以lnM,lnM,lnM2不能为某个三角形的三边长,所以h(x)=lnx 不是保三角形函数.
所以,当M<2时,h(x)=lnx (x∈[M,+∞))不是保三角形函数.
综上所述:M的最小值为2
对任意一个三角形三边长a,b,c∈[M,+∞),且a+b>c,b+c>a,c+a>b,
则h(a)=lna,h(b)=lnb,h(c)=lnc.
因为a≥2,b≥2,a+b>c,所以(a-1)(b-1)≥1,所以ab≥a+b>c,所以lnab>lnc,
即lna+lnb>lnc.
同理可证明lnb+lnc>lna,lnc+lna>lnb.
所以lna,lnb,lnc是一个三角形的三边长.
故函数h(x)=lnx (x∈[M,+∞),M≥2),是保三角形函数…13分
(ii)其次证明当0<M<2时,h(x)=lnx(x∈[M,+∞))不是保三角形函数,
因为0<M<2,所以M+M=2M>M2,所以M,M,M2是某个三角形的三条边长,
而lnM+lnM=2lnM=lnM2,所以lnM,lnM,lnM2不能为某个三角形的三边长,所以h(x)=lnx 不是保三角形函数.
所以,当M<2时,h(x)=lnx (x∈[M,+∞))不是保三角形函数.
综上所述:M的最小值为2
看了 (2014•福建模拟)定义:...的网友还看了以下:
如图,AC为圆O的直径,△ABD为圆O的内接三角形,AB=BD,BD交AC于F点,BE//AD交A 2020-04-27 …
如图,三角形abc,内部的一点d,关于边ab ac,的对称点分别是点e f.一.判断三角形a e如 2020-05-13 …
三角形ABO的三个顶点的坐标分别为(12,0),(8,8),(0,0),矩形CDEF是其内接矩形, 2020-06-03 …
a={x|x是平面内的三角形},b={x|x是平面内的圆}对应法则f每一个三角形都对应他的内切圆请 2020-06-15 …
菱形内接三角形菱形ABCD中,以A为顶点,E,F分别在BC,DC上,AEF做等边三角形.当角BAC 2020-07-06 …
判断以下对应是否为从集合A到B的映射,并说明理由.(1)A={平面内的圆},B={平面内的三角形} 2020-07-30 …
下面从集合P到集合Q的对应f为映射的是A.P={0,3,4},Q={-2,-√3,0,√3,2}, 2020-07-30 …
关于直角三角形中内接图形的数量关系问题:在Rt△ABC中,角A=90°,以BC(斜边)边为内接正方 2020-08-03 …
在三角形ABC中,BC=8,高AH=4.三角形DEF在三角形ABC内,三个顶点D,E,F分别在BC 2020-08-03 …
“A={平面a内的圆},B={平面a内的三角形},对应关系f:作圆内接三角形.”是从A到B的映射吗 2020-08-03 …