早教吧 育儿知识 作业答案 考试题库 百科 知识分享

对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D(m<n),同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n]则称函数f(x)是区间[m,n]上的“

题目详情
对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D(m<n),同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n]则称函数f(x)是区间[m,n]上的“保值函数”.
(1)求证:函数g(x)=x2-2x不是定义域[0,1]上的“保值函数”;
(2)已知f(x)=2+
1
a
-
1
a2x
(a∈R,a≠0)是区间[m,n]上的“保值函数”,求a的取值范围.
▼优质解答
答案和解析
(1)证明:g(x)=x2-2x=(x-1)2-1,
x∈[0,1]时,g(x)∈[-1,0],
根据函数g(x)不是定义域[0,1]上的“保值函数”.
(2))由f(x)的定义域和值域都是[m,n]得f(m)=m,f(n)=n,
因此m,n是方程2+
1
a
-
1
a2x
=x的两个不相等的实数根,
等价于方程a2x2-(2a2+a)x+1=0有两个不等的实数根,
即△=(2a2+a)2-4a2>0,
解得a>
1
2
或a<-
3
2