早教吧 育儿知识 作业答案 考试题库 百科 知识分享

直线L过双曲线X2-Y2\3=1的左焦点F2(2,0)且与双曲线交于P,Q(1)无论L饶F2如何转动,X轴上总存在定点M(m,0)使MP⊥MQ,求m(2)过PQ做x=1\2的垂线PA,PB,垂足为AB,λ=PA+QB\AB,求λ的取值.

题目详情
直线L过双曲线X2-Y2\3=1的左焦点F2(2,0)且与双曲线交于P,Q
(1)无论L饶F2如何转动,X轴上总存在定点M(m,0)使MP⊥MQ,求m
(2)过PQ做x=1\2的垂线PA,PB,垂足为AB,λ=PA+QB\AB,求λ的取值.
▼优质解答
答案和解析
(1) 先考虑直线垂直于x轴,假设存在M(m,0))
那么MF2垂直于PQ,L与双曲线的交点为P(2,3)Q(2,-3)
那么mp的斜率K1=与MQ的斜率之积:3/(2-m)*-3/(2-m)=-1
m=5 或 -1
再考虑k=0 不可能
最后考虑k>0或3
m1=-1
综合 以上 情况 :存在 m,且 m=-1
(2)先考虑 PQ垂直于 x轴 ;
则 PA=QB=3/2
AB=6
λ=PA+QB\AB=1/2
在考虑 k存在 时 ;
由双曲线定义得:|PA|=|PF2|/2,|QB|=|QF2|/2
PA+QB=(PF2+QF2)/2=PQ/2
设P点的坐标(x1,y1)
设Q点的坐标(x2,y2)
λ=PQ/2AB=1/2根号下 (1+1/k^2)
k^2>3
1/2=<λ<根号3/3