早教吧作业答案频道 -->数学-->
如图20所示,在三角形ABC中,AB=5,BC=3,AC=4,线段AC上一动点P(P与A、C不重合),过点P作PQ//AB交BC于点Q.(1)当三角形PQC的面积与四边形PABQ的面积的1/3时,求CP的长.(2)当三角形PQC的周长与四边形PABQ
题目详情
如图20所示,在三角形ABC中,AB=5,BC=3,AC=4,线段AC上一动点P(P与A、C不重合),过点P作PQ//AB交BC于点Q.
(1)当三角形PQC的面积与四边形PABQ的面积的1/3时,求CP的长.
(2)当三角形PQC的周长与四边形PABQ的周长相等时,求CP的长.
(3)在AB上是否存在点M,使得三角形PQM为等腰直角三角形?若不存在,请说明理由;若存在,请求PQ的长.
(1)当三角形PQC的面积与四边形PABQ的面积的1/3时,求CP的长.
(2)当三角形PQC的周长与四边形PABQ的周长相等时,求CP的长.
(3)在AB上是否存在点M,使得三角形PQM为等腰直角三角形?若不存在,请说明理由;若存在,请求PQ的长.
▼优质解答
答案和解析
提示如下,详细过程自己补充
(1)S(PQC):S(PABQ)=1:3,则S(PQC):S(ABC)=1:(1+3)=1:4
因PQ平行AB,S(PQC):S(ABC)=CP^:AC^ (^表示平方)
则CP:AC=1:2,PC=AC/2=4/2=2
(2)设CP=x
AP=4-x,CQ=3x/4,BQ=3-3x/4
三角形PQC的周长与四边形PABQ的周长相等,则
PQ+x+3x/4=PQ+(4-x)+(3-3x/4)+5
得x=24/7
(3)设存在点M,PQ=x,取PQ中点G,连接GM,则GM垂直PQ且GM=DG=PG=PQ/2=x/2
CQ=3x/5,BQ=3-3x/5
过D作DE垂直PQ交AB于E
因PQ平行AB,MG垂直PQ,DE垂直PQ,MG=DG,则DGME为正方形
DE垂直BM,DE=GM=x/2
又DE=4/5*BQ=4/5(3-3x/5)
则4/5(3-3x/5)=x/2
解得x=120/49
所以存在点M使得三角形PQM为等腰直角三角形,PQ=120/49
(1)S(PQC):S(PABQ)=1:3,则S(PQC):S(ABC)=1:(1+3)=1:4
因PQ平行AB,S(PQC):S(ABC)=CP^:AC^ (^表示平方)
则CP:AC=1:2,PC=AC/2=4/2=2
(2)设CP=x
AP=4-x,CQ=3x/4,BQ=3-3x/4
三角形PQC的周长与四边形PABQ的周长相等,则
PQ+x+3x/4=PQ+(4-x)+(3-3x/4)+5
得x=24/7
(3)设存在点M,PQ=x,取PQ中点G,连接GM,则GM垂直PQ且GM=DG=PG=PQ/2=x/2
CQ=3x/5,BQ=3-3x/5
过D作DE垂直PQ交AB于E
因PQ平行AB,MG垂直PQ,DE垂直PQ,MG=DG,则DGME为正方形
DE垂直BM,DE=GM=x/2
又DE=4/5*BQ=4/5(3-3x/5)
则4/5(3-3x/5)=x/2
解得x=120/49
所以存在点M使得三角形PQM为等腰直角三角形,PQ=120/49
看了 如图20所示,在三角形ABC...的网友还看了以下:
已知a,b,c分别是三角形ABC的三个内角A,B,C所对的边,1若三角形ABC面积=根号3/2,c 2020-04-05 …
已知a,b,c分别是三角形ABC的三个内角A,B,C所对的边,1若三角形ABC面积=根号3/2,c 2020-04-05 …
求∫(y^2+z^2)dx+(x^2+y^2)dy+(x^2+y^2)dz沿C的线积分求∫(y^2 2020-05-16 …
已知关于x的一元二次方程ax^2+2bx+c=0(a>0),当a=1时,方程4x^2+4bx+c= 2020-05-16 …
求积分∫c(e^z)/(z^2+1)^2dz|z|=r>1c为正方向的积分 2020-06-12 …
定积分求面积问题求椭圆Ax^2+2Bxy+Cy^2=1的面积,C>0,AC-B^2>0基础定积分求 2020-06-21 …
设fx=x^2+bx+c(b,c∈R),若丨x丨≥2时,f(x)≥0,且f(x)在区间(2,3]上 2020-07-31 …
高一数学题:已知△ABC的三内角A,B,C所对的边分别为a,b,c,且a^2+c^2-b^2-ac 2020-08-01 …
请教一道代数题:若(b^2+c^2-a^2)/2bc+……若(b^2+c^2-a^2)/2bc+(c 2020-11-06 …
请教一道代数题:若(b^2+c^2-a^2)/2bc+……若(b^2+c^2-a^2)/2bc+(c 2020-11-06 …