早教吧作业答案频道 -->数学-->
f(x)在x=0处可导且f'(0)=ln2,且对任意的x,y∈R有f(x+y)=f(x)f(y),求f(x)
题目详情
f(x)在x=0处可导且f'(0)=ln2,且对任意的x,y∈R有f(x+y)=f(x)f(y),求f(x)
▼优质解答
答案和解析
f(0+0)=f(0)f(0),f(0)=1或f(0)=0
假如f(0)=0,{f(0+h)-f(0)}/h={f(0)f(h)-f(0)}/h=0,则有f′(0)=0≠ln2,所以f(0)≠0
f(x+h)-f(x)=f(X)f(h)-f(x)=f(x)(f(h)-1)=f(x)(f(h)-f(0))
{f(x+h)-f(x)}/h=f(x)(f(h)-f(0))/h,h→0,有f′(x)=f(x)ln2, dy/dx=yln2,x=0,y=1
dy/y=ln2dx,积分得lny=xln2+c, x=0,y=1,c=0
lny=xln2,
y=2^x
假如f(0)=0,{f(0+h)-f(0)}/h={f(0)f(h)-f(0)}/h=0,则有f′(0)=0≠ln2,所以f(0)≠0
f(x+h)-f(x)=f(X)f(h)-f(x)=f(x)(f(h)-1)=f(x)(f(h)-f(0))
{f(x+h)-f(x)}/h=f(x)(f(h)-f(0))/h,h→0,有f′(x)=f(x)ln2, dy/dx=yln2,x=0,y=1
dy/y=ln2dx,积分得lny=xln2+c, x=0,y=1,c=0
lny=xln2,
y=2^x
看了 f(x)在x=0处可导且f'...的网友还看了以下:
f(x)在(a,b)内可导,且其导数为f’(x),那么f'(x)在(a,b)上是否连续?请说明理由 2020-05-14 …
一道大一数学题,急等!设f(x)有二阶连续导数,且f(0)=0,试证函数g(x)可导,且g'(x) 2020-06-06 …
已知函数y=f(x)在t=0处可导,且具有性质f(t+s)=(f(t)+f(s))/(1-f(t) 2020-06-08 …
有关导数与微分概念命题?若f(x+1)=af(x)总成立,且f'(0)=b,a,b为非零常数,则f 2020-06-10 …
大一高数设函数f:定义域(0,正无穷)在x=1处可导,且f(xy)=yf(x)+xf(y),对任意 2020-06-11 …
f(x)单调增加有连续导数,且f(0)=0,f(a)=b,求证,f(x)单调增加有连续导数,且f( 2020-06-15 …
设在a的某邻域内有f(x)有连续的二阶导数,且f'(a)不等于0,求w=(x->a)lim{[[1 2020-06-16 …
设f(x)有二阶连续导数,且f'(2)=2,limf''(x)/|x-2|=-2(x-->2)则一 2020-07-31 …
数学类可能是ROLL定理的内容f(x)在0,1上连续,且可导.f(1)=2倍的f(x)从0到1/2的 2020-11-02 …
设f(x)有二阶连续导数且f’(x)=0,limx—0f’’(x)/[x]=1为什么f(0)是f(x 2020-12-27 …