早教吧作业答案频道 -->数学-->
f(x)在x=0处可导且f'(0)=ln2,且对任意的x,y∈R有f(x+y)=f(x)f(y),求f(x)
题目详情
f(x)在x=0处可导且f'(0)=ln2,且对任意的x,y∈R有f(x+y)=f(x)f(y),求f(x)
▼优质解答
答案和解析
f(0+0)=f(0)f(0),f(0)=1或f(0)=0
假如f(0)=0,{f(0+h)-f(0)}/h={f(0)f(h)-f(0)}/h=0,则有f′(0)=0≠ln2,所以f(0)≠0
f(x+h)-f(x)=f(X)f(h)-f(x)=f(x)(f(h)-1)=f(x)(f(h)-f(0))
{f(x+h)-f(x)}/h=f(x)(f(h)-f(0))/h,h→0,有f′(x)=f(x)ln2, dy/dx=yln2,x=0,y=1
dy/y=ln2dx,积分得lny=xln2+c, x=0,y=1,c=0
lny=xln2,
y=2^x
假如f(0)=0,{f(0+h)-f(0)}/h={f(0)f(h)-f(0)}/h=0,则有f′(0)=0≠ln2,所以f(0)≠0
f(x+h)-f(x)=f(X)f(h)-f(x)=f(x)(f(h)-1)=f(x)(f(h)-f(0))
{f(x+h)-f(x)}/h=f(x)(f(h)-f(0))/h,h→0,有f′(x)=f(x)ln2, dy/dx=yln2,x=0,y=1
dy/y=ln2dx,积分得lny=xln2+c, x=0,y=1,c=0
lny=xln2,
y=2^x
看了 f(x)在x=0处可导且f'...的网友还看了以下:
已知①对于任意的x∈R都有f(x+2π3)=f(x);②对于任意的x∈R,都有f(π6-x)=f( 2020-04-12 …
对于任意正数a,b有f(ab)=f(a)+f(b),且f(1)的导数=1 证明f(x) 在零到正无 2020-05-13 …
已知二次函数f(x)=ax^2+bx+c的导数为f'(x),f'(x)>0.对任意实数x,有f(x 2020-05-17 …
一道关于极限和导数的数学分析题已知:f(x)满足对任意实数x,y,都有f(x+y)=f(x)+f( 2020-05-17 …
设f(x)=x^n•sin(1/x)(x≠0),且f(0)=0,则f(x)在x=0处()设f(x) 2020-05-20 …
函数f(x,y)在y>x>0时连续可导已知对于任意z>y>x,有f(x,y)*f(y,z)=f(x 2020-05-22 …
设f(x)在(-∞,+∞)内可导,且对任意x1、x2,当x1>x2时,都有f(x1)>f(x2), 2020-06-12 …
设f(x)在x=0处可导,且对任意x.y满足f(x+y)=f(x)f(y),证明f(x)处处可导, 2020-06-18 …
任意一个定义域关于原点对称的函数均可写成一个奇函数与一个偶函数之和,也就是f(x)=1/2[f(x 2020-07-30 …
已知定义在(0,+∞)上的函数f(x)满足:1.对于任意的x,y∈(0,+∞)都有f(x+y)=f 2020-08-01 …