早教吧作业答案频道 -->数学-->
f(x)单调增加有连续导数,且f(0)=0,f(a)=b,求证,f(x)单调增加有连续导数,且f(0)=0,f(a)=b,求证:积分区间为0到a的∫f(x)dx+积分区间0到b的∫g(x)dx=ab,其中g(x)是f(x)的反函数~懵了~
题目详情
f(x)单调增加有连续导数,且f(0)=0,f(a)=b,求证,
f(x)单调增加有连续导数,且f(0)=0,f(a)=b,求证:积分区间为0到a的∫f(x)dx+积分区间0到b的∫g(x)dx=ab,其中g(x)是f(x)的反函数~懵了~
f(x)单调增加有连续导数,且f(0)=0,f(a)=b,求证:积分区间为0到a的∫f(x)dx+积分区间0到b的∫g(x)dx=ab,其中g(x)是f(x)的反函数~懵了~
▼优质解答
答案和解析
对第2个积分设变量代换t=g(x),则x=f(t),x从0到b时,则t从0到a
=∫[0,a]f(x)dx+∫[0,a]tf'(t)dt=∫[0,a]f(x)dx+∫[0,a]tdf(t)(对第2个再用分部积分)
==∫[0,a]f(x)dx+tf(t)|[0,a]-∫[0,a]f(t)dt=af(a)=ab
=∫[0,a]f(x)dx+∫[0,a]tf'(t)dt=∫[0,a]f(x)dx+∫[0,a]tdf(t)(对第2个再用分部积分)
==∫[0,a]f(x)dx+tf(t)|[0,a]-∫[0,a]f(t)dt=af(a)=ab
看了 f(x)单调增加有连续导数,...的网友还看了以下:
雨滴在空中下落时受到重力G和阻力F的作用,若阻力F随雨滴下落速度增大而增大,则在雨滴下落速度越来越 2020-04-13 …
给定关系R(A,B,C,D,E)和关系S(A,C,E,F,G),对其进行自然连接运算RS后其结果集的 2020-05-26 …
关于对乘积的积分的理解和转化既然有乘积后微分的公式(f*g)'=f'*g+f*g'由此,对乘积的微 2020-06-10 …
为什么电子层用K、L、M、N、O、P、Q来表示一至七层,而不用A\B\C\D\E\F\G或其它符号 2020-06-12 …
现有A,B,C,D,E,F,G七种短周期主族元素,原子序数依次增大.已知A与D,C与F分别同主族, 2020-07-07 …
设f(x)=sinx,g(x)=x-π,x0则f[g(x)]=其连续区间 2020-07-20 …
高中数学设函数f(x),g(x)满足关系g(x)=f(x)*f(x+α)其中α是常数设函数f(x) 2020-07-27 …
高等数学题:设映射f:X→Y,若存在一个映射g:Y→X,使g*f=I,f*g=J,其中I,J分别是 2020-07-30 …
高等数学题:设映射f:X→Y,若存在一个映射g:Y→X,使g*f=I,f*g=J,其中I,J分别是 2020-07-30 …
f(x),g(x)在R上为增函数,判断并证明下列函数的增减性(1)f(x)+g(x).(2)f[g 2020-08-01 …