早教吧作业答案频道 -->数学-->
已知函数y=f(x)在t=0处可导,且具有性质f(t+s)=(f(t)+f(s))/(1-f(t)f(s)),试求出此函数.在这里应该是已知函数y=f(t)在t=0处可导,且具有性质f(t+s)=(f(t)+f(s))/(1-f(t)f(s)),试求出此函数。
题目详情
已知函数y=f(x)在t=0处可导,且具有性质f(t+s)=(f(t)+f(s))/(1-f(t)f(s)),试求出此函数.
在这里应该是已知函数y=f(t)在t=0处可导,且具有性质f(t+s)=(f(t)+f(s))/(1-f(t)f(s)),试求出此函数。
在这里应该是已知函数y=f(t)在t=0处可导,且具有性质f(t+s)=(f(t)+f(s))/(1-f(t)f(s)),试求出此函数。
▼优质解答
答案和解析
由 f(t+s)=(f(t)+f(s))/(1-f(t)f(s)),令s=t=0得:
f(0) = 2f(0)/(1-f(0)²),即 -f(0)(f(0)²+1)/(1-f(0)²) = 0
∴ f(0) = 0
再由f(t+s)=(f(t)+f(s))/(1-f(t)f(s))得:
f(t+s) - f(t+s)f(t)f(s) = f(t)+f(s)
(f(t+s) - f(t)) / s = (f(t+s)f(t)f(s) + f(s)) / s
= (f(t+s)f(t)+1) * f(s)/s
由已知,y=f(x)在t=0处可导,设 f'(0) = k,(k∈R)
则 s->0时,lim (f(s)/s) = f'(0) = k
因此 s->0时,lim((f(t+s) - f(t)) / s) = lim ((f(t+s)f(t)+1) * f(s)/s) = (f(t)²+1)*k
即对于定义域内任意值t,有f(x)在x=t处可导,且 f'(t) = k*(1+f(t)²)
分离变量得:d(f(t))/(1+f(t)²) = k*dt
两边积分得:arctan(f(t)) = k*t + C
以t=0代入上式,利用f(0)=0 得:C = arctan(f(0)) = 0
因此 arctan(f(t)) = k*t
即 f(t) = tan(k*t),(k∈R)
f(0) = 2f(0)/(1-f(0)²),即 -f(0)(f(0)²+1)/(1-f(0)²) = 0
∴ f(0) = 0
再由f(t+s)=(f(t)+f(s))/(1-f(t)f(s))得:
f(t+s) - f(t+s)f(t)f(s) = f(t)+f(s)
(f(t+s) - f(t)) / s = (f(t+s)f(t)f(s) + f(s)) / s
= (f(t+s)f(t)+1) * f(s)/s
由已知,y=f(x)在t=0处可导,设 f'(0) = k,(k∈R)
则 s->0时,lim (f(s)/s) = f'(0) = k
因此 s->0时,lim((f(t+s) - f(t)) / s) = lim ((f(t+s)f(t)+1) * f(s)/s) = (f(t)²+1)*k
即对于定义域内任意值t,有f(x)在x=t处可导,且 f'(t) = k*(1+f(t)²)
分离变量得:d(f(t))/(1+f(t)²) = k*dt
两边积分得:arctan(f(t)) = k*t + C
以t=0代入上式,利用f(0)=0 得:C = arctan(f(0)) = 0
因此 arctan(f(t)) = k*t
即 f(t) = tan(k*t),(k∈R)
看了 已知函数y=f(x)在t=0...的网友还看了以下:
请回答下列有关免疫调节的问题:(1)免疫系统在人体生命活动调节中具有功能.(2)在体液免疫中,受到 2020-05-14 …
若机器字长36位,若采用单字长指令,公完成54种不同的操作,采用三地址格式的访问指令,操作数可在1 2020-06-03 …
已知函数y=f(x)在t=0处可导,且具有性质f(t+s)=(f(t)+f(s))/(1-f(t) 2020-06-08 …
元素周期表上元素的“外围电子排布”简称“价电子层”,这是由于这些能级上的电子数可在化学反应中发生变 2020-06-09 …
若机器字长36位,采用三地址格式访存指令求大神帮助第一题:若机器字长36位,采用三地址格式访存指令 2020-06-18 …
请问在matlab2013版中,怎么实现空集‘[]’在ismember函数中顺利应用例如:A=[1 2020-07-21 …
2、给定程序MODI1.C中函数fun的功能是:从低位开始取出长整型变量s中奇数位上的数,依次构成 2020-07-23 …
古希腊毕达哥拉斯学派研究了“多边形数”,人们把多边形数推广到空间,研究了“四面体数”图①是第一至第 2020-08-01 …
一个人买彩票.假设彩票有12位数,每位可填0-9的任意数,所有数可在任意位置,并且可重复(包括0), 2020-11-03 …
在中心城区内河水系统综合整治工地,挖掘机起着重要作用,某型号挖掘机的部分相关数据如表所示,挖掘机以最 2020-11-10 …