早教吧作业答案频道 -->数学-->
设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积.(2)又设f
题目详情
设y=f(x)是区间[0,1]上的任一非负连续函数.
(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积.
(2)又设f(x)在区间(0,1)内可导,且f′(x)>-
,证明(1)中的x0是唯一的.
(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积.
(2)又设f(x)在区间(0,1)内可导,且f′(x)>-
2f(x) |
x |
▼优质解答
答案和解析
证明:(1)要证明:存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,
等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积.
即证明:存在x0∈(0,1),使得
f(x)dx=x0f(x0)成立.
令φ(x)=x
f(t)dt
则φ(x)在区间[0,1]上连续;
且:φ(0)=0;φ(1)=0;
根据罗尔定理,在区间(0,1)上,至少有一个值x0,使得φ'(x0)=0.
而:φ'(x)=
f(t)dt+x[-f(x)]
=
f(t)dt-xf(x)
φ'(x0)=
f(t)dt-x0f(x0)=0
既有:
f(t)dt=x0f(x0)
也就是:
f(x)dx=x0f(x0)
命题得证.
(2)令:F(x)=xf(x)-
f(t)dt
显然对于x=x0时,
F(x0)=x0f(x0)-
f(t)dt=0
故至少存在一个x0,使得F(x)=0成立.
F'(x)=f(x)+xf'(x)+f(x)
=2f(x)+xf'(x)
根据题意有:f′(x)>-
且x>0
∴xf'(x)>-2f(x)
即:2f(x)+xf'(x)>0
∴F(x)在(0,1)上单调递增.
故F(x)在(0,1)上至多只有一个点满足F(x)=0;
综上可知,F(x)在(0,1)上有且仅有一个点x=x0,使得:
f(x)dx=x0f(x0)成立.
故x0是唯一的.
命题得证.
等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积.
即证明:存在x0∈(0,1),使得
∫ | 1 x0 |
令φ(x)=x
∫ | 1 x |
则φ(x)在区间[0,1]上连续;
且:φ(0)=0;φ(1)=0;
根据罗尔定理,在区间(0,1)上,至少有一个值x0,使得φ'(x0)=0.
而:φ'(x)=
∫ | 1 x |
=
∫ | 1 x |
φ'(x0)=
∫ | 1 x0 |
既有:
∫ | 1 x0 |
也就是:
∫ | 1 x0 |
命题得证.
(2)令:F(x)=xf(x)-
∫ | 1 x |
显然对于x=x0时,
F(x0)=x0f(x0)-
∫ | 1 x0 |
故至少存在一个x0,使得F(x)=0成立.
F'(x)=f(x)+xf'(x)+f(x)
=2f(x)+xf'(x)
根据题意有:f′(x)>-
2f(x) |
x |
且x>0
∴xf'(x)>-2f(x)
即:2f(x)+xf'(x)>0
∴F(x)在(0,1)上单调递增.
故F(x)在(0,1)上至多只有一个点满足F(x)=0;
综上可知,F(x)在(0,1)上有且仅有一个点x=x0,使得:
∫ | 1 x0 |
故x0是唯一的.
命题得证.
看了 设y=f(x)是区间[0,1...的网友还看了以下:
曲线y=f(x)在点(x0,y0)的法线方程是(?)Ay-y0=f(x0)(x-x0)By-y0= 2020-05-17 …
设f(x)在点x=x0处可导,且f′(x0)=-2,则lim(△x->∞)(f(x0-f(X0-△ 2020-06-03 …
高数导数题设f(x)在x0处可导,且x0处导数>0,则存在δ>0,使得a、f(x)在区间﹙x0﹣δ 2020-06-10 …
|√x-√x0|=|x-x0/√x+√x0|≤1/√x0|x-x0|为什么会小于等于1/√x0|x 2020-07-09 …
设函数f(x)在点x0及其邻近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)^2.a 2020-07-22 …
泰勒公式是只在x→x0时才能用,还是x0邻域(a,b)有f(x)的n+1阶导数就能用.我看书上泰勒 2020-07-31 …
高数,关于极限若limf(x){x趋近于X0}存在,为什么不能说明limf(x)=f(x0){x从 2020-07-31 …
已知f(x)的求导f`(x)=-2则lim[f(x0-3△x)-f(x0+△x)]/△x为多少我令他 2020-11-01 …
设f(x)在x0处可导,下列式子中与f′(x0)相等的是()(1)lim△x→0f(x0)−f(x0 2020-11-01 …
函数f(x)在x=x0处的导数可表示为y′|x=x0,即()A.f′(x0)=f(x0+△x)-f( 2020-11-01 …