早教吧作业答案频道 -->数学-->
设向量a=(4cosA,sinA),b=(sinB,4cosB),c=(cosB,-4sinB)(1)若a与b-2c垂直,求tan(A+B)的值.(2)求|b+a|的最大值.(3)若tanAtanB=16,求证a平行b
题目详情
设向量a=(4cosA,sinA),b=(sinB,4cosB),c=(cosB,-4sinB)
(1)若a与b-2c垂直,求tan(A+B)的值.
(2)求|b+a|的最大值.
(3)若tanAtanB=16,求证a平行b
(1)若a与b-2c垂直,求tan(A+B)的值.
(2)求|b+a|的最大值.
(3)若tanAtanB=16,求证a平行b
▼优质解答
答案和解析
(1)向量a=(4cosa,sina),b-2c=(sinβ-2cosβ,4cosβ+8cosβ)
因为a与b-2c垂直,则a(b-2c)=0
所以4cosa(sinβ-2cosβ)+sina(4cosβ+8cosβ)=0
整理得4(sinacosβ+cosasinβ)-8(cosacosβ-sinasinβ)=0
即4sin(a+β)-8cos(a+β)=0得tan(a+β)=2
(2)向量b+c=(sinβ+cosβ,4cosβ-4sinβ)
|b+c|=√(sinβ+cosβ)��+(4cosβ-4sinβ)��=√17-30sinβcosβ=√17-15sin2β
所以|b+c|的最大值为√17+15=√32=4√2
(3)由tanatanβ=16,得sinasinβ=16cosacosβ
即sinasinβ-4cosa4cosβ=0
所以a//b
因为a与b-2c垂直,则a(b-2c)=0
所以4cosa(sinβ-2cosβ)+sina(4cosβ+8cosβ)=0
整理得4(sinacosβ+cosasinβ)-8(cosacosβ-sinasinβ)=0
即4sin(a+β)-8cos(a+β)=0得tan(a+β)=2
(2)向量b+c=(sinβ+cosβ,4cosβ-4sinβ)
|b+c|=√(sinβ+cosβ)��+(4cosβ-4sinβ)��=√17-30sinβcosβ=√17-15sin2β
所以|b+c|的最大值为√17+15=√32=4√2
(3)由tanatanβ=16,得sinasinβ=16cosacosβ
即sinasinβ-4cosa4cosβ=0
所以a//b
看了 设向量a=(4cosA,si...的网友还看了以下:
a,b,c成等差数列,那么证明a^2(b+c),b^2(a+c),c^2(b+c)成等差数列a^2 2020-04-26 …
如果a^2+b^2>c^2+d^2,abcd均大于0.求证a+b>c+d如果a^2+b^2>c^2 2020-06-08 …
八年级分式的运算已知a不等于b,b不等于c,c不等于a,且a/(b-c)+b/(c-a)+c/(a 2020-06-08 …
“不妨设”法在证明不等式时如证明(2a+b+c)^2/2a^2+(b+c)^2+(2b+a+c)^ 2020-06-23 …
外森比克不等式加强的证明外森比克不等式还可以加强为:a^2+b^2+c^2>=(4√3)S+(a- 2020-06-27 …
用向量证明余弦定理a、b、c都表示向量,|a|、|b|、|c|表示向量的模因为a=b-c所以a^2 2020-07-07 …
初二数学题目帮帮我啊1求证:"若X,Y为有理数,且X^2+Y^2+1/2=X+Y,则X=Y=1/2 2020-07-09 …
1.已知a,b,c∈R.a+b+c=1a²+b²+c²=1/2求证c≥02(1)已知a,c是正实数 2020-07-14 …
高二数学题,帮忙解决,要步骤的(1)设a,b,c属于R,a+b+c=0,abc0.(2)设a,b, 2020-07-22 …
设x,y∈R+,a=x+1/y,b=y+1/z,c=z+1/x,求证a+b+c≥6还有一道哈.已知 2020-08-01 …