早教吧作业答案频道 -->其他-->
(2006•大连)如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜
题目详情
(2006•大连)如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.
探究:
(1)请猜想与线段DE有关的三个结论;
(2)请你利用图2,图3选择不同位置的点P按上述方法操作;
(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;
如果你认为你写的结论是错误的,请用图2或图3加以说明;
(注意:错误的结论,只要你用反例给予说明也得分)
(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).

探究:
(1)请猜想与线段DE有关的三个结论;
(2)请你利用图2,图3选择不同位置的点P按上述方法操作;
(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;
如果你认为你写的结论是错误的,请用图2或图3加以说明;
(注意:错误的结论,只要你用反例给予说明也得分)
(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).

▼优质解答
答案和解析
(1)DE∥BC,DE=BC,DE⊥AC.
(2)如图4,如图5.

(3)方法一:
如图6,
连接BE,
∵PM=ME,AM=MB,∠PMA=∠EMB,
∴△PMA≌△EMB.
∵PA=BE,∠MPA=∠MEB,
∴PA∥BE.
∵平行四边形PADC,
∴PA∥DC,PA=DC.
∴BE∥DC,BE=DC,
∴四边形DEBC是平行四边形.
∴DE∥BC,DE=BC.
∵∠ACB=90°,
∴BC⊥AC,
∴DE⊥AC.

方法二:
如图7,连接BE,PB,AE,
∵PM=ME,AM=MB,
∴四边形PAEB是平行四边形.
∴PA∥BE,PA=BE,
余下部分同方法一:

方法三:
如图8,连接PD,交AC于N,连接MN,
∵平行四边形PADC,
∴AN=NC,PN=ND.
∵AM=BM,AN=NC,
∴MN∥BC,MN=
BC.
又∵PN=ND,PM=ME,
∴MN∥DE,MN=
DE.
∴DE∥BC,DE=BC.
∵∠ACB=90°,
∴BC⊥AC.
∴DE⊥AC.

(4)如图9,DE∥BC,DE=BC.
(2)如图4,如图5.

(3)方法一:
如图6,
连接BE,
∵PM=ME,AM=MB,∠PMA=∠EMB,
∴△PMA≌△EMB.
∵PA=BE,∠MPA=∠MEB,
∴PA∥BE.
∵平行四边形PADC,
∴PA∥DC,PA=DC.
∴BE∥DC,BE=DC,
∴四边形DEBC是平行四边形.
∴DE∥BC,DE=BC.
∵∠ACB=90°,
∴BC⊥AC,
∴DE⊥AC.

方法二:
如图7,连接BE,PB,AE,
∵PM=ME,AM=MB,
∴四边形PAEB是平行四边形.
∴PA∥BE,PA=BE,
余下部分同方法一:

方法三:
如图8,连接PD,交AC于N,连接MN,
∵平行四边形PADC,
∴AN=NC,PN=ND.
∵AM=BM,AN=NC,
∴MN∥BC,MN=
| 1 |
| 2 |
又∵PN=ND,PM=ME,
∴MN∥DE,MN=
| 1 |
| 2 |
∴DE∥BC,DE=BC.
∵∠ACB=90°,
∴BC⊥AC.
∴DE⊥AC.

(4)如图9,DE∥BC,DE=BC.
看了 (2006•大连)如图1,P...的网友还看了以下:
下列说法正确的是A.如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.如果直线a和平 2020-05-13 …
下列说法正确的是()A、平面内的任意两个向量都共线B、空间的任意三个向量都不共面C、空间的任意两个 2020-05-13 …
下面说法中,( )是正确的。A.任务栏总是位于桌面底部B.任务栏的尺寸和位置都能够让用户任意进行 2020-05-24 …
关于“任务栏”下列说法不准确的是A讲桌面上某一窗口关闭,任务栏中相应的子图标不一定消失B处于后台运 2020-06-18 …
阅读下面材料,并完成材料后面的问题:在平面区域D中任取一点,记事件“该点落在其内部一个区域d内”为 2020-06-26 …
下面的平面图形中,不能镶嵌平面的图形是()选项为:A,任意一个三角形B,任意一个四边形C,任意一个 2020-07-01 …
概率论,对于任意A,B,下面结论正确的是对于任意A,B,下面结论正确的是()A.若P(AB)=0, 2020-07-30 …
已知m是平面α的一条斜线,点A是平面α外的任意点,是经过点A的一条动直线,那么下列情形中可能出现的 2020-07-30 …
当一个带电导达到静电平衡时:(A)表面上电荷密度较大处电势较高(B)表面曲率较大处电势较高(C)导 2020-07-31 …
在长方体ABCD-A'B'C'D',底面是边长为2的正方形,高为4,则点A'到截面AB'D'的距离 2020-08-02 …