早教吧作业答案频道 -->数学-->
设函数f(x)=1/x,g(x)=-x^2+bx,有且仅有两个不同公共点A(x1,y1),B(x2,y2).证x1+x2>0,y1+y2
题目详情
设函数f(x)=1/x,g(x)=-x^2+bx ,有且仅有两个不同公共点A(x1,y1),B(x2,y2).证x1+x2>0,y1+y2
▼优质解答
答案和解析
令f(x)=g(x),1/x=-x²+bx,即x³-bx²+1=0(x≠0),
显然x=0不是上面3次方程的根,那么该方程应该有1个或者3个实数解(若存在虚数解,虚数解是成对出现的),又只有两个公共点,那么有重根,假设x2是重根
那么3次方程等价于 (x-x1)(x-x2)²=0, 即x³-(x1+2x2)x²+(2x1x2+x2²)x-x1x2²=0
所以 x1+2x2=b, 2x1x2+x2²=0, -x1x2²=1
所以 x2(2x1+x2)=0 因为x2≠0,所以2x1+x2=0
又x1=-1/x2², 所以x1<0
所以 x1+x2<x1+x1+x2=2x1+x2=0
所以 x2>x1+x2>0, 所以 x1x2<0
y1+y2=1/x1+1/x2=(x1+x2)/(x1x2)
分子>0.分母<0
所以y1+y2<0
显然x=0不是上面3次方程的根,那么该方程应该有1个或者3个实数解(若存在虚数解,虚数解是成对出现的),又只有两个公共点,那么有重根,假设x2是重根
那么3次方程等价于 (x-x1)(x-x2)²=0, 即x³-(x1+2x2)x²+(2x1x2+x2²)x-x1x2²=0
所以 x1+2x2=b, 2x1x2+x2²=0, -x1x2²=1
所以 x2(2x1+x2)=0 因为x2≠0,所以2x1+x2=0
又x1=-1/x2², 所以x1<0
所以 x1+x2<x1+x1+x2=2x1+x2=0
所以 x2>x1+x2>0, 所以 x1x2<0
y1+y2=1/x1+1/x2=(x1+x2)/(x1x2)
分子>0.分母<0
所以y1+y2<0
看了 设函数f(x)=1/x,g(...的网友还看了以下:
分解因式:(1)4a2b-6ab2+2ab(2)6(a-b)2-12(a-b)(3)x(x+y)2 2020-04-08 …
先化简,再求值 (1)[(x-y)的平方+(x+y)(x-y)]÷2x 其中X=2010,y=20 2020-05-16 …
已知3f(x)+2f(x)=x,求f(x)怎么算我自己算了一半因为3f(x)+2f(x)=x3f( 2020-06-03 …
用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x}.用[ 2020-06-04 …
设f(x)=ln10x,g(x)=x,h(x)=ex10,则当x充分大时有()A.g(x)<h(x 2020-06-18 …
设X≥1,比较因为比较x3与x2-x+1的大小解x-(x-x+1)=x-x+x-1=x(x-1)+ 2020-06-18 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
已知函数f(x)=lnxa+x在x=1处的切线方程为2x-y+b=0.(Ⅰ)求实数a,b的值;(Ⅱ 2020-07-31 …
若函数f(x),g(x)的定义域都是R,则f(x)>g(x)(x∈R)的充要条件是?A.存在一个属 2020-08-02 …
求ln[(1+X)/(1-X)]的导数求ln[(1+X)/(1-X)]导数的思路和答案我知道lnx的 2020-10-31 …