早教吧作业答案频道 -->数学-->
以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.(1)试判断BD、CE的数量关系,并说明理由;(2)延长BD交CE于点F试求∠BFC的度
题目详情
以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.
(1)试判断BD、CE的数量关系,并说明理由;
(2)延长BD交CE于点F试求∠BFC的度数;
(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.

(1)试判断BD、CE的数量关系,并说明理由;
(2)延长BD交CE于点F试求∠BFC的度数;
(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.

▼优质解答
答案和解析
(1)CE=BD,理由如下:
∵等腰Rt△ABC,等腰Rt△ADE,
∴AE=AD,AC=AB,
在△EAC与△DAB中,
,
∴△EAC≌△DAB(SAS),
∴CE=BD;
(2)∵△EAC≌△DAB,
∴∠ECA=∠DBA,
∴∠ECA+∠CBF=∠DBA+∠CBF=45°,
∴∠ECA+∠CBF+∠DCB=45°+45°=90°,
∴∠BFC=180°-90°=90°;
(3)成立,
∵等腰Rt△ABC,等腰Rt△ADE,
∴AE=AD,AC=AB,
在△EAC与△DAB中,
,
∴△EAC≌△DAB(SAS),
∴CE=BD;
∵△EAC≌△DAB,
∴∠ECA=∠DBA,
∴∠ECA+∠CBF=∠DBA+∠CBF=45°,
∴∠ECA+∠CBF+∠DCB=45°+45°=90°,
∴∠BFC=180°-90°=90°.
∵等腰Rt△ABC,等腰Rt△ADE,
∴AE=AD,AC=AB,
在△EAC与△DAB中,
|
∴△EAC≌△DAB(SAS),
∴CE=BD;
(2)∵△EAC≌△DAB,
∴∠ECA=∠DBA,
∴∠ECA+∠CBF=∠DBA+∠CBF=45°,
∴∠ECA+∠CBF+∠DCB=45°+45°=90°,
∴∠BFC=180°-90°=90°;
(3)成立,
∵等腰Rt△ABC,等腰Rt△ADE,
∴AE=AD,AC=AB,
在△EAC与△DAB中,
|
∴△EAC≌△DAB(SAS),
∴CE=BD;
∵△EAC≌△DAB,
∴∠ECA=∠DBA,
∴∠ECA+∠CBF=∠DBA+∠CBF=45°,
∴∠ECA+∠CBF+∠DCB=45°+45°=90°,
∴∠BFC=180°-90°=90°.
看了 以点A为顶点作等腰Rt△AB...的网友还看了以下:
已知圆M:x+(y-2)=1,设点B,C是直线l:x-2y=0上的两点x+(y-2)=1,设点B, 2020-04-12 …
已知圆M:x?+(y-2)?=1,设点B,C是直线l:x-2y=0上的两点x?+(y-2)?=1, 2020-04-12 …
已知定椭圆:x^2/a^2+y^2/b^2=1(a>b>0)的左,右顶点分别为A和B,点S和椭圆C 2020-05-13 …
质点从o点起做速度为零的匀加速直线运动,试证明:(1)从o点起在连续相等的时间t内质点所通过的质点 2020-06-26 …
矩形ABCD中,|AB|=8,|BC|=6.E,F,G,H分别是矩形四条边的中点,R,S,T是线段 2020-06-30 …
一道大物题质点P在一直线上运动,其坐标x与时间t有如下关系x=-Asinωt(A为常数)则任意时刻 2020-07-21 …
飞轮半径0.5米,由静止开始(t等于0)等加速转动,10秒后,在轮缘上一点的速度为10m/s.那么 2020-07-22 …
求一道向量题设向量P和向量Q是点P和点Q在平面中的向量,通过PQ两点的向量方程为r=(1-t)p+t 2020-11-30 …
在三角形ABC中,AB等于AC等于12cm,BC等于6cm,D为BC的中点,动点P从B点出发,以每秒 2020-12-01 …
设函数y=ax方+bx+c(Aa等于0),对任意实数T其图象经过点(2+t,M)和点(2-t,M), 2021-01-22 …