早教吧作业答案频道 -->其他-->
(2013•闵行区二模)已知:如图,在梯形ABCD中,AD∥BC,AB=CD,BC=2AD.DE⊥BC,垂足为点F,且F是DE的中点,联结AE,交边BC于点G.(1)求证:四边形ABGD是平行四边形;(2)如果AD=2AB,求证:
题目详情
(2013•闵行区二模)已知:如图,在梯形ABCD中,AD∥BC,AB=CD,BC=2AD.DE⊥BC,垂足为点F,且F是DE的中点,联结AE,交边BC于点G.(1)求证:四边形ABGD是平行四边形;
(2)如果AD=
| 2 |
▼优质解答
答案和解析
证明:(1)∵DE⊥BC,且F是DE的中点,
∴DC=EC,
即得∠DCF=∠ECF,
又∵AD∥BC,AB=CD,
∴∠B=∠DCF,AB=EC,
∴∠B=∠ECF,
∴AB∥EC,
又∵AB=EC,
∴四边形ABEC是平行四边形,
∴BG=CG=
BC,
∵BC=2AD,
∴AD=BG,
又∵AD∥BG,
∴四边形ABGD是平行四边形;
(2)∵四边形ABGD是平行四边形,
∴AB∥DG,AB=DG,
又∵AB∥EC,AB=EC,
∴DG∥EC,DG=EC,
∴四边形DGEC是平行四边形,
又∵DC=EC,
∴四边形DGEC是菱形,
∴DG=DC,
由AD=
AB,即得CG=
DC=
DG,
∴DG2+DC2=CG2,
∴∠GDC=90°,
∴四边形DGEC是正方形.
证明:(1)∵DE⊥BC,且F是DE的中点,∴DC=EC,
即得∠DCF=∠ECF,
又∵AD∥BC,AB=CD,
∴∠B=∠DCF,AB=EC,
∴∠B=∠ECF,
∴AB∥EC,
又∵AB=EC,
∴四边形ABEC是平行四边形,
∴BG=CG=
| 1 |
| 2 |
∵BC=2AD,
∴AD=BG,
又∵AD∥BG,
∴四边形ABGD是平行四边形;
(2)∵四边形ABGD是平行四边形,
∴AB∥DG,AB=DG,
又∵AB∥EC,AB=EC,
∴DG∥EC,DG=EC,
∴四边形DGEC是平行四边形,
又∵DC=EC,
∴四边形DGEC是菱形,
∴DG=DC,
由AD=
| 2 |
| 2 |
| 2 |
∴DG2+DC2=CG2,
∴∠GDC=90°,
∴四边形DGEC是正方形.
看了 (2013•闵行区二模)已知...的网友还看了以下:
不等式比较大小的(1)已知x,y属于R,比较(x^2)+(y^2)-3x+3y与x+y-6的大小. 2020-05-20 …
设A是三阶方阵,如果已知|E+A|=0,|2E+A|=0,|E-A|=0,求出行列式|E+A+A^ 2020-06-14 …
设A=(101;020;-101)求满足方程AB+E=A^2+B的矩阵B用AB+E=A^2+B(A 2020-06-18 …
老师我有点不明白A(A^2-4A+3E)=E怎么知道A就可逆了?E+A^3=(E+A)(E-A+A 2020-06-29 …
利用凸函数概念证明2*e^((a+b)/2)≤e^a+e^b 2020-07-02 …
设A=1-112-22-11-1问A能否对角化,若A可对角化,求P,并求A的n次方我知道先由|λE 2020-07-30 …
A为三阶行列式方程,已知X=AX-A^2+E,求X.为什么X=AX-A^2+E可以变成(A-E)X 2020-08-03 …
我用matlab求定积分,求出的结果中含有下划线Z,并且还在RootOf,该如何处理?clearcl 2020-11-01 …
设A是2阶方阵,且A^2=E,A不等于±E,证明:r(A+E)=r(A-E)=1 2020-11-02 …
多选题设有定义:inta[2][3];下面关于数组元素引用正确的有()A.a[0][3]B.a[0] 2020-11-11 …