早教吧作业答案频道 -->数学-->
在正方形ABCD中,E、F分别为BC、CD的中点,AE与BF相交于点G.(1)如图1,求证:AE⊥BF;(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4,求QF的值
题目详情
在正方形ABCD中,E、F分别为BC、CD的中点,AE与BF相交于点G.
(1)如图1,求证:AE⊥BF;
(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4,求QF的值

(1)如图1,求证:AE⊥BF;
(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4,求QF的值

▼优质解答
答案和解析
(1)证明:
∵E,F分别是正方形ABCD边BC,CD的中点,
∴CF=BE,
在△ABE和△BCF中,
∴Rt△ABE≌Rt△BCF(SAS),
∴∠BAE=∠CBF,
又∵∠BAE+∠BEA=90°,
∴∠CBF+∠BEA=90°,
∴∠BGE=90°,
∴AE⊥BF;
(2)
∵将△BCF沿BF折叠,得到△BPF,
∴FP=FC,∠PFB=∠BFC,∠FPB=90°,
∵CD∥AB,
∴∠CFB=∠ABF,
∴∠ABF=∠PFB,
∴QF=QB,
设QF=x,PB=BC=AB=4,CF=PF=2,
∴QB=x,PQ=x-2,
在Rt△BPQ中,
∴x2=(x-2)2+42,
解得:x=5,
即QF=5.
∵E,F分别是正方形ABCD边BC,CD的中点,
∴CF=BE,
在△ABE和△BCF中,
|
∴Rt△ABE≌Rt△BCF(SAS),
∴∠BAE=∠CBF,
又∵∠BAE+∠BEA=90°,
∴∠CBF+∠BEA=90°,
∴∠BGE=90°,
∴AE⊥BF;
(2)
∵将△BCF沿BF折叠,得到△BPF,
∴FP=FC,∠PFB=∠BFC,∠FPB=90°,
∵CD∥AB,
∴∠CFB=∠ABF,
∴∠ABF=∠PFB,
∴QF=QB,
设QF=x,PB=BC=AB=4,CF=PF=2,
∴QB=x,PQ=x-2,
在Rt△BPQ中,
∴x2=(x-2)2+42,
解得:x=5,
即QF=5.
看了 在正方形ABCD中,E、F分...的网友还看了以下:
1:如图,用与竖直方向成30度角的力F将重为10N的物体推靠在光滑的竖直墙上,求当物体沿着墙匀速滑 2020-04-27 …
1.设f(x)=ax^2+bx,且-1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围2 2020-04-27 …
已知函数f(x)=x2/1+x2(1)求f(2)+f(1/2),f(3)+f(1/3)的值(2)求 2020-05-12 …
(2010•郑州二模)已知函数f(x)满足f(x)=f(π-x),且当x∈(-π2,π2)时,f( 2020-05-14 …
高一复合函数f(2x+1)=x^2-2x,则f(2)=若f(x)+2f(1/x)=3x,则f(2) 2020-05-17 …
已知函数f(x)的定义域为(-1,1),求满足下列条件的实数a的取值范围1.f(x)在定义域内单调 2020-06-02 …
将抛物线F:y=x2-3x+2向右平移1个单位,再向下平移2个单位得到抛物线F′.1.解析式F′2 2020-06-05 …
改错题:若二次函数f(x)的图像过原点,f(-1):[1,2]f(1):[3,4]求f(-2)范围 2020-06-10 …
设f(x)为连续函数,f(0)=a,F(t)=∫∫∫Ω{z-f(x^2+y^2+z^2)]dv,其 2020-06-15 …
设f(x)在闭区间[0,1]连续,在(0,1)内可导且f(0)=0,f(1)=1/3求证:彐ξ设f 2020-06-23 …