早教吧作业答案频道 -->数学-->
如图1,正方形ABCD中,点E、F分别为边AD、CD上的点,且DE=CF,AF、BE相交于点G.(1)问:线段AF和BE有怎样的位置关系和数量关系?(直接写出结论,不必证明)答:.(2)若点E、F分别运
题目详情
如图1,正方形ABCD中,点E、F分别为边AD、CD上的点,且DE=CF,AF、BE相交于点G.

(1)问:线段AF和BE有怎样的位置关系和数量关系?(直接写出结论,不必证明)
答:___.
(2)若点E、F分别运动到边AD的延长线和边DC的延长线上,其他条件均保持不变(如图2),此时连接BF和EF,M、N、P、Q分别为AE、EF、BF、AB的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种?并写出证明过程.

(1)问:线段AF和BE有怎样的位置关系和数量关系?(直接写出结论,不必证明)
答:___.
(2)若点E、F分别运动到边AD的延长线和边DC的延长线上,其他条件均保持不变(如图2),此时连接BF和EF,M、N、P、Q分别为AE、EF、BF、AB的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种?并写出证明过程.
▼优质解答
答案和解析
(1)如图1中,∵四边形ABCD是正方形,
∴AB=AD=CD,∠BAC=∠ADC=90°,
∵DE=CF,
∴AE=DF,
在△ABE和△DAF中,
,
∴△ABE≌△DAF,
∴AF=BE,∠AEB=∠AFD,
∵∠AFD+∠FAD=90°,
∴∠AEB+∠FAD=90°,
∴∠EGA=90°,
∴BE⊥AF.
故答案为线段AF和BE的位置关系是互相垂直,数量关系是相等.
(2)结论:四边形MNPQ是正方形.
理由:如图2中,∵四边形ABCD是正方形,
∴AD=AB=DC,
∵DE=CF,
∴AE=DF,
在△ABE和△DAF中,
,
∴△ABE≌△DAF,
∴AF=BE,∠AEB=∠AFD,
∵∠AFD+∠FAD=90°,
∴∠AEB+∠FAD=90°,
∴∠EGA=90°,
∴BE⊥AF.
∵M、N、P、Q分别为AE、EF、BF、AB的中点,
∴MN∥AF∥QP,MQ∥EB∥NP,
MN=PQ=
AF,MQ=NP=
BE,
∴MN=NP=PQ=MQ,
∴四边形MNPQ是菱形,
∵AF⊥EB,EB∥NP,
∴NP⊥AF,
∵MN∥AF,
∴MN⊥NP,
∴∠MNP=90°,
∴四边形MNPQ是正方形.
∴AB=AD=CD,∠BAC=∠ADC=90°,
∵DE=CF,
∴AE=DF,
在△ABE和△DAF中,
|
∴△ABE≌△DAF,
∴AF=BE,∠AEB=∠AFD,
∵∠AFD+∠FAD=90°,
∴∠AEB+∠FAD=90°,
∴∠EGA=90°,
∴BE⊥AF.
故答案为线段AF和BE的位置关系是互相垂直,数量关系是相等.
(2)结论:四边形MNPQ是正方形.
理由:如图2中,∵四边形ABCD是正方形,
∴AD=AB=DC,
∵DE=CF,
∴AE=DF,
在△ABE和△DAF中,

|
∴△ABE≌△DAF,
∴AF=BE,∠AEB=∠AFD,
∵∠AFD+∠FAD=90°,
∴∠AEB+∠FAD=90°,
∴∠EGA=90°,
∴BE⊥AF.
∵M、N、P、Q分别为AE、EF、BF、AB的中点,
∴MN∥AF∥QP,MQ∥EB∥NP,
MN=PQ=
1 |
2 |
1 |
2 |
∴MN=NP=PQ=MQ,
∴四边形MNPQ是菱形,
∵AF⊥EB,EB∥NP,
∴NP⊥AF,
∵MN∥AF,
∴MN⊥NP,
∴∠MNP=90°,
∴四边形MNPQ是正方形.
看了 如图1,正方形ABCD中,点...的网友还看了以下:
椭圆方程式的题椭圆方程x^2/a^2+y^2/b^2=t怎么用y=f(u),x=f(u)表示如果椭 2020-05-16 …
设f(x)=ex次方-e-x次方,g(x)=ex次方+e-x次方设f(x)=(ex次方-e-x次方 2020-05-17 …
已知等边三角形AOB中,OB在X轴正半轴上,OA=2,将三角形AOB绕点O逆时针旋转60°,点A与 2020-05-22 …
正方形ABCD中,点p是DC延长线上一动点,连接PA过点B、D作BE⊥PA,DF⊥PA,垂足为E, 2020-06-07 …
数学题一道,有小学基础就可以来做,有20种钥匙,分别命名为a,b,c,d,e,f,g,...,r, 2020-06-20 …
EXCEL循环或计算问题。F=A+B+C+D+E。(A.B.C.D.E.F.均要大于零)E=A*10 2020-11-01 …
正六边形轨道ABCDEF的周长为7.2米,甲、乙两只机器鼠分别从A,C两点同时出发,均按A→B→C→ 2020-11-29 …
英语翻译全天会议议题按照IT基础设施的6大主要因素划分,涵盖了A,B,C,D,E,F等方方面面,是难 2020-12-13 …
如图,正方形ABCD中,以B为圆心,BA长为半径作弧AC,圆o与弧AC外切于点P,与AD,CD相切于 2020-12-25 …
a、b和D、E打架,致使a和E轻微伤。现a先起诉E、F,而E另立案起诉a、b。起诉与反诉的问题。a. 2021-01-13 …