早教吧作业答案频道 -->数学-->
已知一次函数y=kx+3(k<0)的图象与x轴、y轴分别相交于点A、B,tan∠OAB=2,点P(a,b)是在该函数的图象上的一点.(1)求k的值;(2)若点P到x轴、y轴的距离之和等于2,求点P的坐标;(3
题目详情
已知一次函数y=kx+3(k<0)的图象与x轴、y轴分别相交于点A、B,tan∠OAB=2,点P(a,b)是在该函数的图象上的一点.

(1)求k的值;
(2)若点P到x轴、y轴的距离之和等于2,求点P的坐标;
(3)设a=1-m,如果在两个实数a与b之间(不包括a和b)有且只有一个整数,求实数m的取值范围.

(1)求k的值;
(2)若点P到x轴、y轴的距离之和等于2,求点P的坐标;
(3)设a=1-m,如果在两个实数a与b之间(不包括a和b)有且只有一个整数,求实数m的取值范围.
▼优质解答
答案和解析
(1)在y=kx+3中令x=0,则y=3,即B的坐标是(0,3),OB=3.
∵tan∠BAO=
=2,
∴OA=
.
∴A的坐标是(
,0).
代入y=kx+3得0=
k+3,解得k=-2,
∴一次函数的解析式是y=-2x+3.
(2)∵点P(a,b)是在该函数的图象上的一点,
∴b=-2a+3,
∵点P到x轴、y轴的距离之和等于2,
∴|a|=2-|b|,
∴|a|=2-|-2a+3|,
当a<0时,则有-a=2+2a-3,
解得a=
(不合题意舍去),
当0<a<
时,则有a=2+2a-3,
解得a=1,
∴P(1,1),
当a>
时,则有a=2-2a+3,
解得a=
,
∴P(
,-
);
(3)由已知P(1-m,2m+1),易知,a≠b,1-m≠2m+1,m≠0;
若m>0,a<1<b,由题设a≥0,b≤2,
则 1-m<1,2m+1≤2,
解不等式组的解集是:0<m≤
;
若m<0,b<1<a,由题设b≥0,a≤2,
则 1-m>1,2m+1≥0,
解得:-
≤m<0;
综合上述:m的取值范围是:-
≤m≤
且m≠0.
∵tan∠BAO=
| OB |
| OA |
∴OA=
| 3 |
| 2 |
∴A的坐标是(
| 3 |
| 2 |
代入y=kx+3得0=
| 3 |
| 2 |
∴一次函数的解析式是y=-2x+3.
(2)∵点P(a,b)是在该函数的图象上的一点,
∴b=-2a+3,
∵点P到x轴、y轴的距离之和等于2,
∴|a|=2-|b|,
∴|a|=2-|-2a+3|,
当a<0时,则有-a=2+2a-3,
解得a=
| 1 |
| 3 |
当0<a<
| 3 |
| 2 |
解得a=1,
∴P(1,1),
当a>
| 3 |
| 2 |
解得a=
| 5 |
| 3 |
∴P(
| 5 |
| 3 |
| 1 |
| 3 |
(3)由已知P(1-m,2m+1),易知,a≠b,1-m≠2m+1,m≠0;
若m>0,a<1<b,由题设a≥0,b≤2,
则 1-m<1,2m+1≤2,
解不等式组的解集是:0<m≤
| 1 |
| 2 |
若m<0,b<1<a,由题设b≥0,a≤2,
则 1-m>1,2m+1≥0,
解得:-
| 1 |
| 2 |
综合上述:m的取值范围是:-
| 1 |
| 2 |
| 1 |
| 2 |
看了 已知一次函数y=kx+3(k...的网友还看了以下:
若关于的x方程(m-1)x的|m|-1次方-x+2是一元一次方程,求m的值 2020-05-21 …
急.我给积分的a,b都属于正实数,且a2+b2=a+b,求a+b最大值?a,b属于正实数,且a+b 2020-05-23 …
关于的x一元二次方程X^2-X+P-1=0有两实数根X1,X2.若[2+X1(1-X1)][2+X 2020-06-03 …
关于的x不等式mx2+6mx+m+8大于等于0在R上恒成立,求m的取值范围 2020-06-06 …
关于的x不等式mx2+6mx+m+8大于等于0在R上恒成立,求m的取值范围呃.其实答案我也会求出来 2020-07-15 …
设D:x平方+y平方小于等于4,x大于等于o,y大于等于o,将∫∫sin(x平方+y平方)dxdy 2020-07-18 …
(2008•徐汇区二模)如图所示,⊙O的半径OA=1,点M是线段OA延长线上的任意一点,⊙M与⊙O 2020-07-24 …
已知如图,抛物线y=x2-x-1与y轴交于C点,以原点O为圆心,以OC为半径作⊙O,交x轴于A、B 2020-07-26 …
已知关于x的不等式组5-2x≥-1x-a大于0无解,a的取值范围是≥3若只将不等式组中X-a>o改 2020-07-31 …
请教一个关于无穷小计算的问题O(x3)中将x替换为x-x3/3+O(x3)对于无穷小括号的计算,用一 2020-10-31 …