早教吧作业答案频道 -->数学-->
在平面直角坐标系中,已知点A的坐标(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)若过B点的直线与抛物线交于P,与y轴交于E,若BE=PE,求BP的长
题目详情
在平面直角坐标系中,已知点A的坐标(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.
(1)求抛物线的解析式;
(2)若过B点的直线与抛物线交于P,与y轴交于E,若BE=PE,求BP的长;
(3)如图2是否存在点P,使得△ACP是以AC为直角边的直角三角形,若存在,求P点的坐标,若不存在,说明理由.

(1)求抛物线的解析式;
(2)若过B点的直线与抛物线交于P,与y轴交于E,若BE=PE,求BP的长;
(3)如图2是否存在点P,使得△ACP是以AC为直角边的直角三角形,若存在,求P点的坐标,若不存在,说明理由.

▼优质解答
答案和解析
(1)由A(4,0),可知OA=4,
∵OA=OC=4OB,
∴OA=OC=4,OB=1,
∴C(0,4),B(-1,0).
设抛物线的解析式是y=ax2+bx+c,
则
,
解得:
.
则抛物线的解析式是:y=-x2+3x+4;
(2)如图1,过点P作PF⊥y轴于点F,
∵在△PFE与△BOE中,
,
∴△PFE≌△BOE(AAS),
∴PF=OB.
∵B(-1,0),
∴点P的横坐标是1,
把x=1代入y=-x2+3x+4,得
y=-12+3×1+4=6,
故P(1,6),
∴BP=
=2
;
(3)存在.
第一种情况,如图2,当以C为直角顶点时,过点C作CP1⊥AC,交抛物线于点P1.过点P1作y轴的垂线,垂足是M.
∵∠ACP1=90°,
∴∠MCP1+∠ACO=90°.
∵∠ACO+∠OAC=90°,
∴∠MCP1=∠OAC.
∵OA=OC,
∴∠MCP1=∠OAC=45°,
∴∠MCP1=∠MP1C,
∴MC=MP1,
设P(m,-m2+3m+4),则m=-m2+3m+4-4,
解得:m1=0(舍去),m2=2.
∴-m2+3m+4=6,
即P(2,6).
第二种情况,如图3,当点A为直角顶点时,过A作AP2,AC交抛物线于点P2,过点P2作y轴的垂线,垂足是N,AP交y轴于点F.
∴P2N∥x轴,
由∠CAO=45°,
∴∠OAP=45°,
∴∠FP2N=45°,AO=OF.
∴P2N=NF,
设P2(n,-n2+3n+4),则n=(-n2+3n+4)+4
解得:n1=-2,n2=4(舍去),
∴-n2+3n+4=-6,
则P2的坐标是(-2,-6).
综上所述,P的坐标是(2,6)或(-2,-6).

∵OA=OC=4OB,
∴OA=OC=4,OB=1,
∴C(0,4),B(-1,0).
设抛物线的解析式是y=ax2+bx+c,
则
|
解得:
|
则抛物线的解析式是:y=-x2+3x+4;
(2)如图1,过点P作PF⊥y轴于点F,
∵在△PFE与△BOE中,
|
∴△PFE≌△BOE(AAS),
∴PF=OB.
∵B(-1,0),
∴点P的横坐标是1,
把x=1代入y=-x2+3x+4,得
y=-12+3×1+4=6,
故P(1,6),

∴BP=
(-1-1)2+(0-6)2 |
10 |
(3)存在.
第一种情况,如图2,当以C为直角顶点时,过点C作CP1⊥AC,交抛物线于点P1.过点P1作y轴的垂线,垂足是M.
∵∠ACP1=90°,
∴∠MCP1+∠ACO=90°.
∵∠ACO+∠OAC=90°,
∴∠MCP1=∠OAC.
∵OA=OC,
∴∠MCP1=∠OAC=45°,
∴∠MCP1=∠MP1C,
∴MC=MP1,
设P(m,-m2+3m+4),则m=-m2+3m+4-4,
解得:m1=0(舍去),m2=2.
∴-m2+3m+4=6,

即P(2,6).
第二种情况,如图3,当点A为直角顶点时,过A作AP2,AC交抛物线于点P2,过点P2作y轴的垂线,垂足是N,AP交y轴于点F.
∴P2N∥x轴,
由∠CAO=45°,
∴∠OAP=45°,
∴∠FP2N=45°,AO=OF.
∴P2N=NF,
设P2(n,-n2+3n+4),则n=(-n2+3n+4)+4
解得:n1=-2,n2=4(舍去),
∴-n2+3n+4=-6,
则P2的坐标是(-2,-6).
综上所述,P的坐标是(2,6)或(-2,-6).
看了 在平面直角坐标系中,已知点A...的网友还看了以下:
已知函数f(x)=2跟号3sin的平方(拍/4+x)+2cos的平方x-跟号3,x属于R.求函数f( 2020-03-30 …
有堆煤,烧了些,已经烧的煤和剩下的煤的比是1∶3如果再烧44吨,已烧的和剩下的煤的比是4∶1.还剩多 2020-03-30 …
A市在B市的12km的位置,给B市发货的车以40km/时送货,以60km/时返回A市,往返1时10 2020-04-27 …
已知x+2/x=3+2/3的解为:x1=3,x2=2/3; 方程x+2/x=4+2/4的解为:x1 2020-05-13 …
在平面直角坐标系中,已知焦距为4的椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点 2020-05-15 …
1.已知关于x的方程3x-2m=4的解是x=m,则m的值是?2.在市中学生篮球联赛中,市二中主力队 2020-05-23 …
1.观察下面几个关于平方和的有趣等式:1的平方+4的平方+6的平方+7的平方=2的平方+3的平方+ 2020-06-04 …
多元微积分求sin(x-pi/4)sin(x)的麦克劳林级数是已知的,但是老实说不能用(x-pi/ 2020-06-10 …
如图,将圆上所有的点的纵坐标压缩为原来的一半,横坐标不变,所得的曲线是什么曲线?压缩为原来的呢(探 2020-06-25 …
俄罗斯科学家用含20个质子的钙的一种原子轰击含95个质子的镅原子,结果4次成功合成4个第115号元 2020-07-01 …