早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A坐标为(1,3),A、B两点关于直线y=x对称,反比例函数y=kx(x>0)图象经过点A,点P是直线y=x上一动点.(1)B点的坐标为;(
题目详情
如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A坐标为(1,3),A、B两点关于直线y=x对称,反比例函数y=
(x>0)图象经过点A,点P是直线y=x上一动点.
(1)B点的坐标为______;
(2)若点C是反比例函数图象上一点,是否存在这样的点C,使得以A、B、C、P四点为顶点的四边形是平行四边形?若存在,求出点C坐标;若不存在,请说明理由;
(3)若点Q是线段OP上一点(Q不与O、P重合),当四边形AOBP为菱形时,过点Q分别作直线OA和直线AP的垂线,垂足分别为E、F,当QE+QF+QB的值最小时,求出Q点坐标.

k |
x |
(1)B点的坐标为______;
(2)若点C是反比例函数图象上一点,是否存在这样的点C,使得以A、B、C、P四点为顶点的四边形是平行四边形?若存在,求出点C坐标;若不存在,请说明理由;
(3)若点Q是线段OP上一点(Q不与O、P重合),当四边形AOBP为菱形时,过点Q分别作直线OA和直线AP的垂线,垂足分别为E、F,当QE+QF+QB的值最小时,求出Q点坐标.

▼优质解答
答案和解析
(1)B点的坐标为(3,1);
(2)∵反比例函数y=
(x>0)图象经过点A(1,3),
∴k=1×3=3,
∴反比例函数的解析式为y=
,
∵点P在直线y=x上,
∴设P(m,m)
①若PC为平行四边形的边,
∵点A的横坐标比点B的横坐标小2,点A的纵坐标比点B的纵坐标大2,
∴点C在点P的下方,则点C的坐标为(m+2,m-2)如图1,
若点C在点P的上方,则点C的坐标为(m-2,m+2)如图2,
把C(m+2,m-2)代入反比例函数的解析式得:m=±
,
∵m>0,
∴m=
,>
∴C1(
+2,
−2),
同理可得另一点C2(
-2,
+2);
②若PC为平行四边形的对角线,如图3,
∵A、B关于y=x对称,
∴OP⊥AB
此时点C在直线y=x上,且为直线y=x与双曲线y=
的交点,
由

(2)∵反比例函数y=
k |
x |
∴k=1×3=3,
∴反比例函数的解析式为y=
3 |
x |
∵点P在直线y=x上,
∴设P(m,m)

∵点A的横坐标比点B的横坐标小2,点A的纵坐标比点B的纵坐标大2,
∴点C在点P的下方,则点C的坐标为(m+2,m-2)如图1,
若点C在点P的上方,则点C的坐标为(m-2,m+2)如图2,
把C(m+2,m-2)代入反比例函数的解析式得:m=±
7 |
∵m>0,
∴m=
7 |
∴C1(
7 |
7 |

7 |
7 |
②若PC为平行四边形的对角线,如图3,
∵A、B关于y=x对称,
∴OP⊥AB
此时点C在直线y=x上,且为直线y=x与双曲线y=
3 |
x |
由
看了 如图,在平面直角坐标系中,△...的网友还看了以下:
如图,O为∠PAQ的角平分线上的一点,OB垂直AP于点B,以O为圆心,OB为半径做圆O,求证AQ与圆 2020-03-31 …
1/4x^2+y^2=1,有直线y=kx+4过椭圆交于A,B点,O为中心,若OA与OB斜率之和为4 2020-05-19 …
如图,O为角PAQ的角平分线上的一点,OB垂直AB于B,以O为圆心OB为半径作圆O.求证 2020-05-20 …
如图1,O为直线AB上的一点,过O作射线OC,将一个直角三角板的直角顶点放于O处,一边ON在射线O 2020-06-02 …
求三角形MPQ面积的最大值设椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分 2020-07-22 …
在△ABC中,∠C=90°,∠B=30°,O为AB上一点,AO=m,○O的半径为1/2,问m在什么 2020-07-26 …
已知圆O:x^2y^2=1,O为坐标原点,边长为根号2的正方形ABCD的顶点A,B均在圆上,C,D 2020-07-31 …
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号3/2,过点M(2,1) 2020-08-02 …
1已知一次函数y=k(x+m)+b经过A(1,2),B(2,-1)两点,则此函数解析式为()它与x轴 2020-11-27 …
已知向量a=(1,-3,2),向量b=(-2,1,1),点A(-3,-1,4),B(-2,-2,2) 2021-01-04 …