早教吧作业答案频道 -->其他-->
已知α1,α2,α3,α4是四维非零列向量,记A=(α1,α2,α3,α4),A*是A的伴随矩阵,若齐次方程组Ax=0的基础解系为(1,0,-2,0)T,则A*x=0的基础解系为()A.α1,α2B.α1,α3C.α1
题目详情
已知α1,α2,α3,α4是四维非零列向量,记A=(α1,α2,α3,α4),A*是A的伴随矩阵,若齐次方程组Ax=0的基础解系为(1,0,-2,0)T,则A*x=0的基础解系为( )
A.α1,α2
B.α1,α3
C.α1,α2,α3
D.α2,α3,α4
A.α1,α2
B.α1,α3
C.α1,α2,α3
D.α2,α3,α4
▼优质解答
答案和解析
Ax=0的基础解系只含有一个向量,所以矩阵A的秩为3,
∴A存在不为0的3阶子式,即A*不为0
∴r(A*)≥1
又因为,此时
=0,由AA*=
E=0,知r(A)+r(A*)≤4
∴r(A*)≤1
∴r(A*)=1
∴A*x=0的基础解系含有三个向量
∴正确答案只可能是C或者D
∵(α1,α2,α3,α4)
=0
即α1-2α3=0
∴α1与α3线性相关
而方程组的基本解系必须是线性无关的向量
∴正确答案为D.
∴A存在不为0的3阶子式,即A*不为0
∴r(A*)≥1
又因为,此时
|
|
∴r(A*)≤1
∴r(A*)=1
∴A*x=0的基础解系含有三个向量
∴正确答案只可能是C或者D
∵(α1,α2,α3,α4)
|
即α1-2α3=0
∴α1与α3线性相关
而方程组的基本解系必须是线性无关的向量
∴正确答案为D.
看了 已知α1,α2,α3,α4是...的网友还看了以下:
设三阶实对称矩阵A满足A^2=2A且向量α=(1,-1,0)T是齐次方程Ax=0的基础解系,求设三 2020-04-13 …
若向量组a1,a2,a3是线性方程组的基础解系,那么与其等价的向量组是否也是其基础解系?.已知h1 2020-05-16 …
在正确理解成语意思的基础上,将每5个成语连缀成一段生动的话,公写8段.所用成语:明火执仗,缘木求鱼 2020-06-16 …
25.设A为4×5的矩阵,且秩(A)=2,则齐次方程Ax=0的基础解系所含向量的个数是.25.设A 2020-07-08 …
线性代数问题用消元法解下列非齐次性方程组2x+3y+z=4x-2y+4z=-53x+8y-2z=1 2020-07-17 …
线性代数基础解系问题设齐次线性方程组Ax=0A为m*n矩阵,且r(A)=n-3r1r2r3是方程组 2020-07-18 …
η0是非齐次线性方程组Ax=B的特解ξ1,ξ2...ξn-r是导出组Ax=0的基础解系证η0,ξ1 2020-07-21 …
1,设n元n-1个方程的齐次线性方程组的系数阵A的秩为n-1,求该齐次线性方程组的基础解系.2,给 2020-08-02 …
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)x=0的基础解系为η1和η2,则A的属于λ 2020-11-02 …
设β1,β2是非其次线性方程组AX=b的两个不同的解,η1,η2是对应齐次线性方程组AX=0的基础解 2020-11-02 …