早教吧作业答案频道 -->数学-->
设Sn为数列{an}的前n项和,对任意的n为正整数,都有Sn=m+1-m乘an(1)证明:数列{an}是等比数列(2)设数列{an}的公比q=f(m),数列{bn}满足b1=2a1,bn=f(bn-1),求数列{bn}的通项公式,(3)在满足(2)的条
题目详情
设Sn为数列{an}的前n项和,对任意的n为正整数,都有Sn=m+1-m乘an(1)证明:数列{an}是等比数列(2)设数列{an}的公比q=f(m),数列{bn}满足b1=2a1,bn=f(bn-1),求数列{bn}的通项公式,(3)在满足(2)的条件下,求数列{2^(n+1)/bn}前n项和Tn
▼优质解答
答案和解析
① 由题,有 Sn==m+1-m*an
S(n-1)=m+1-m*a(n-1)
上式对应作差,可得:an=-m*an+m*a(n-1) ,即:an/a(n-1)=m/(m+1)
故,数列{an}是以m/(m+1)为公比的等比数列;
② 令n=1,则a1=s1=m+1-m*a1,a1=1,b1=2.
bn=f(bn-1)=b(n-1)/[b(n-1)+1],整理有:1/bn-1/b(n-1)=1
分别取n=1,2,3,……,n .上式进行累加有:
1/bn-1/b1=n-1
把b1=1,带入上式整理可得bn=2/(2n-1)
③ 令Fn=2^(n+1)/bn=(2n-1)*2^n
则Tn=F1+F2+…+Fn=1*2^1+3*2^2+…(2n-1)*2^n ,在这应该有个公式∑n*2^n,不记得了,取其1/2就可以
S(n-1)=m+1-m*a(n-1)
上式对应作差,可得:an=-m*an+m*a(n-1) ,即:an/a(n-1)=m/(m+1)
故,数列{an}是以m/(m+1)为公比的等比数列;
② 令n=1,则a1=s1=m+1-m*a1,a1=1,b1=2.
bn=f(bn-1)=b(n-1)/[b(n-1)+1],整理有:1/bn-1/b(n-1)=1
分别取n=1,2,3,……,n .上式进行累加有:
1/bn-1/b1=n-1
把b1=1,带入上式整理可得bn=2/(2n-1)
③ 令Fn=2^(n+1)/bn=(2n-1)*2^n
则Tn=F1+F2+…+Fn=1*2^1+3*2^2+…(2n-1)*2^n ,在这应该有个公式∑n*2^n,不记得了,取其1/2就可以
看了 设Sn为数列{an}的前n项...的网友还看了以下:
1:已知命题:“若数列{an}是等差数列,且am=a,am=b(m≠n、m,n∈N+)则a(m+n 2020-05-16 …
在数列{a(n)},{b(n)}中,a(1)=2,b(1)=4,且a(n),b(n),a(n+1) 2020-05-22 …
A是p*n矩阵(p行n列),A的秩rank(A)=n,证明rank(A'A)=n(A'表示A的转置 2020-06-30 …
已知数列an满足a1=7/3,a(n+1)=3a(n)-4n+2(1)求a2,a3的值(2)证明数 2020-07-09 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
1.设a(n)是等比数列,a2=2,a5=1/4,则a1a2+a2a3+.+a(n)a(n+1)的 2020-07-29 …
1.已知数列(an)满足a1=1/5,且当n≥2时,有a[n-1]/a[n]=(2a[n-1]+1 2020-07-30 …
矩阵一行N列,A=[nn-1...21],求基础解系 2020-08-02 …
矩阵一行N列,A=[nn-1...21],求基础解系 2020-08-02 …
高二数学问题2已知数列{a[n]}中,a1=1,a2=r(r大于0)且数列{a[n]*a[n+1]} 2020-11-29 …