早教吧作业答案频道 -->数学-->
已知直线y=-2x+b(b≠0)与x轴交于点A,与y轴交于点B;一抛物线的解析式为y=x2-(b+10)x+c.(1)若该抛物线过点B,且它的顶点P在直线y=-2x+b上,试确定这条抛物线的解析式;(2)过点B作直线
题目详情
已知直线y=-2x+b(b≠0)与x轴交于点A,与y轴交于点B;一抛物线的解析式为y=x2-(b+10)x+c.
(1)若该抛物线过点B,且它的顶点P在直线y=-2x+b上,试确定这条抛物线的解析式;
(2)过点B作直线BC⊥AB交x轴于点C,若抛物线的对称轴恰好过C点,试确定直线y=-2x+b的解析式.
(1)若该抛物线过点B,且它的顶点P在直线y=-2x+b上,试确定这条抛物线的解析式;
(2)过点B作直线BC⊥AB交x轴于点C,若抛物线的对称轴恰好过C点,试确定直线y=-2x+b的解析式.
▼优质解答
答案和解析
(1)直线y=-2x+b与x轴交于点A,与y轴交于点B,
∴点A坐标为(
,0),点B坐标(0,b),
由题意知,抛物线顶点P坐标为(
,
),
∵抛物线顶点P在直线y=-2x+b上,且过点B,
解得b1=-10,c1=-10,b2=-6,c2=-6,
∴抛物线解析式为y=x2-10或y=x2-4x-6;
(2)∵点A坐标(
,0),点B坐标(0,b),
∴OA=|
|,OB=|b|,
又∵OA⊥OB,AB⊥BC,
∴△OAB∽△OBC
∴
=
∴OB2=OA•OC,
即b2=OC•|
|,
∴OC=
∵抛物线y=x2-(b+10)x+c的对称轴为x=
且抛物线对称轴过点C,
∴|
|=
.
(i)当b≤-10时,-
=-2b,
∴b=
(舍去)
经检验,b=
不合题意,舍去.
(ii)当-10≤b<0时,
=-2b,
∴b=-2,
(iii)当b>0时,
=2b,
∴b=
,
此时抛物线对称轴直线为x=-
=
>0,
BC与x轴的交点在x轴负半轴,
故不符合题意,舍去.
∴直线的解析式为y=-2x-2.
∴点A坐标为(
| b |
| 2 |
由题意知,抛物线顶点P坐标为(
| b+10 |
| 2 |
| 4c−(b+10)2 |
| 4 |
∵抛物线顶点P在直线y=-2x+b上,且过点B,
解得b1=-10,c1=-10,b2=-6,c2=-6,
∴抛物线解析式为y=x2-10或y=x2-4x-6;
(2)∵点A坐标(
| b |
| 2 |

∴OA=|
| b |
| 2 |
又∵OA⊥OB,AB⊥BC,
∴△OAB∽△OBC
∴
| OB |
| OC |
| OA |
| OB |
∴OB2=OA•OC,
即b2=OC•|
| b |
| 2 |
∴OC=
| 2b2 |
| |b| |
∵抛物线y=x2-(b+10)x+c的对称轴为x=
| b+10 |
| 2 |
∴|
| b+10 |
| 2 |
| 2b2 |
| |b| |
(i)当b≤-10时,-
| b+10 |
| 2 |
∴b=
| 10 |
| 3 |
经检验,b=
| 10 |
| 3 |
(ii)当-10≤b<0时,
| b+10 |
| 2 |
∴b=-2,
(iii)当b>0时,
| b+10 |
| 2 |
∴b=
| 10 |
| 3 |
此时抛物线对称轴直线为x=-
−(
| ||
| 2×1 |
| 20 |
| 3 |
BC与x轴的交点在x轴负半轴,
故不符合题意,舍去.
∴直线的解析式为y=-2x-2.
看了 已知直线y=-2x+b(b≠...的网友还看了以下:
已知点P(x,y)是第一象限内的点,且在直线y=-x+8上,已知点P(x,y)是第一象限...已知 2020-05-14 …
46.已知点P(2,-3),求:(1)过点P且平行于直线3x+5y-1=0的直线方程;(246.已 2020-06-04 …
选择真命题下列命题中真命题是()A过直线外一点不一定能做直线的垂线B直线上的点与该直线没有垂线C点 2020-06-06 …
在直角坐标系中,已知点A(0,2),点B(-2,0)过点B和线段OA的中点C作直线BC,以线段BC 2020-06-14 …
看过直线上一点A画这条直线的垂线的程序图.归纳用三角尺画垂线的方法:(1)把三角尺的一条直角边与已 2020-07-16 …
高二数学一道解析几何的难题求大神指点具体如下已知椭圆c:x^2/a^2+y^2/b^2=1(a>b 2020-07-31 …
关于相交线的问题判断正误1.直线上的点与该直线没有垂线2.点到直线的距离是这点到直线的垂线段的长度 2020-08-01 …
几道简单直线方程,1.求过p1(2,1),p2(0,-3)两点的直线方程,再化成斜截式方程2.经过 2020-08-01 …
下列说法中不正确的是()A.垂线是直线B.互为邻补角的两个角的平分线一定垂直C.过一个已知点有且只 2020-08-02 …
下列说法错误的是()A.平面内过一点有且只有一条直线与已知直线垂直B.两点之间的所有连线中,线段最 2020-08-02 …