早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作O,交DC于D,G两点,AD分别于EF,GF交于I,H两点.(1)求∠FDE的度数;(2)试判断四边形FACD的

题目详情
如图,四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作 O,交DC于D,G两点,AD分别于EF,GF交于I,H两点.
作业搜
(1)求∠FDE的度数;
(2)试判断四边形FACD的形状,并证明你的结论;
(3)当G为线段DC的中点时,
①求证:FD=FI;
②设AC=2m,BD=2n,求 O的面积与菱形ABCD的面积之比.
▼优质解答
答案和解析
(1)∵EF是 O的直径,∴∠FDE=90°;

(2)四边形FACD是平行四边形.
理由如下:
∵四边形ABCD是菱形,
∴AB∥CD,AC⊥BD,
∴∠AEB=90°.
又∵∠FDE=90°,
∴∠AEB=∠FDE,
∴AC∥DF,
∴四边形FACD是平行四边形;作业搜

(3)①连接GE,如图.
∵四边形ABCD是菱形,∴点E为AC中点.
∵G为线段DC的中点,∴GE∥DA,
∴∠FHI=∠FGE.
∵EF是 O的直径,∴∠FGE=90°,
∴∠FHI=90°.
∵∠DEC=∠AEB=90°,G为线段DC的中点,
∴DG=GE,
DG
=
GE

∴∠1=∠2.
∵∠1+∠3=90°,∠2+∠4=90°,
∴∠3=∠4,
∴FD=FI;
②∵AC∥DF,∴∠3=∠6.
∵∠4=∠5,∠3=∠4,
∴∠5=∠6,∴EI=EA.
∵四边形ABCD是菱形,四边形FACD是平行四边形,
∴DE=
1
2
BD=n,AE=
1
2
AC=m,FD=AC=2m,
∴EF=FI+IE=FD+AE=3m.
在Rt△EDF中,根据勾股定理可得:
n2+(2m)2=(3m)2
即n=
5
m,
∴S O=π(
3m
2
)2=
9
4
πm2,S菱形ABCD=
1
2
•2m•2n=2mn=2
5
m2
∴S O:S菱形ABCD=
9
5
π
40