10.(2013•日照)如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.不要用正弦
(1)求证:△BAD≌△AEC; (2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.
不要用正弦 余弦什么的 我们现在还没有学到
(1)证明:∵AB=AC,
∴∠B=∠ACB.
又∵四边形ABDE是平行四边形
∴AE∥BD,AE=BD,
∴∠ACB=∠CAE=∠B,
在△DBA和△AEC中
AB=AC
∠CAE=∠B
BD=AE,
∴△DBA≌△AEC(SAS);
如图,四边形ABCD是平行四边形,点E、F分别为AD、BC边上的点,且AE=CF求证:四边形BED 2020-05-16 …
在平面直角坐标系xoy中,直线y=-x+m经过点A(2,0),交y轴于B.点D为x轴上一点且S△A 2020-06-14 …
在平面直角坐标系xOy中,直线y=-x+m经过点A(2,0),交y轴于点B.点D为x轴上一点,且S 2020-06-14 …
8、如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.⑴ 2020-06-27 …
如图,在△ABC中,AD平分∠BAC,P为线段AD上一个动点,PE⊥AD交直线BC于点E①若∠B= 2020-06-27 …
已知定点F1(−2,0),F2(2,0),动点P满足条件:|PF2|−|PF1|=2,点P的轨迹是 2020-07-12 …
已知抛物线E:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线E交于A,B两点,E 2020-07-31 …
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)过点p(1,3/2),离心率e=1/2 2020-08-01 …
已知点M(-1,0),N(1,0),曲线E上任意一点到M的距离均是到点N距离的3倍.(1)求曲线E的 2020-11-27 …
直线y=x-6与x,y轴分别交于点A,B,E从B出发,以每秒一个单位的速度沿线段BO向O移动(E与B 2021-01-16 …