早教吧作业答案频道 -->数学-->
如图,已知点A(2,0),点B在y轴正半轴上,且OB=1/2OA,将点B绕点A顺时针方向旋转90度至点C,旋转前后的点B和点C都在抛物线y=-5/6x²+bx+c上(1)球点B,C的坐标;(2)求该抛物线解析式;(3)连接AC,该
题目详情
如图,已知点A(2,0),点B在y轴正半轴上,且OB=1/2OA,将点B绕点A顺时针方向旋转90度至点C,旋转前后的点B和点C都在抛物线y=-5/6x²+bx+c上
(1)球点B,C的坐标;
(2)求该抛物线解析式;
(3)连接AC,该抛物线上是否存在异于点B的点D,使得点D与AC构成以AC为直角边的三角形为等腰RT三角形?如果存在,求出所有符合条件的点D 的坐标;如果不存在,请说明理由.
(1)球点B,C的坐标;
(2)求该抛物线解析式;
(3)连接AC,该抛物线上是否存在异于点B的点D,使得点D与AC构成以AC为直角边的三角形为等腰RT三角形?如果存在,求出所有符合条件的点D 的坐标;如果不存在,请说明理由.
▼优质解答
答案和解析
(1)∵点A(2,0),
∴OA=2,
∴OB=1/2*OA=1,
∵点B在y轴正半轴上,
∴点B的坐标为(0,1);
过C作CD⊥x轴,垂足为D,
∵BA⊥AC,∴∠OAB+∠CAD=90°,
又∠AOB=90°,∴∠OAB+∠OBA=90°,
∴∠CAD=∠OBA,又AB=AC,∠AOB=∠ADC=90°,
∴△AOB≌△CDA,
∴OA=CD=2,OB=AD=1,
∴OD=OA+AD=3,又C为第一象限的点,
∴点C的坐标为(3,2);
(2)∵点B和点C都在抛物线y=-5/6x²+bx+c上,
∴把B(0,1),C(3,2)代入,
得c=1且-5/6×9+3b+c=2
解得b=17/6,c=1
则抛物线的解析式为y=-5/6*x²+17/6*x+1
(3)该抛物线上存在点P,△ACP是以AC为直角边的等腰直角三角形,分三种情况:
(i)若以AC为直角边,点A为直角顶点,则延长BA至点P1,使得P1A=CA,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,如图所示,

∵AP1=CA=AB,∠MAP1=∠OAB,∠P1MA=∠OBA=90°,
∴△AMP1≌△AOB,
∴AM=AO=2,P1M=OB=1,
∴OM=OA+AM=4,
∴P1(4,-1),经检验点P1在抛物线y=-5/6*x²+17/6*x+1
ii)若以AC为直角边,点C为直角顶点,则过点C作CP2⊥AC,且使得CP2=AC,得到等腰直角三角形ACP2,过点P2作y轴的平行线,过点C作x轴的平行线,两线交于点N,如图,

同理可证△CP2N≌△ABO,
∴CN=OA=2,NP2=OB=1,
又∵C的坐标为(3,2),
∴P2(1,3),经检验P2也在抛物线y=-5/6*x²+17/6*x+1
(iii)若以AC为直角边,点C为直角顶点,则过点C作CP3⊥AC,且使得CP3=AC,得到等腰直角三角形ACP3,过点P3作x轴的平行线,过点C作y轴的平行线,两线交于点H,如图,

同理可证△CP3H≌△BAO,
∴HP3=OA=2,CH=OB=1,
又∵C的坐标为(3,2),
∴P3(5,1),经检验P3不在抛物线y=-5/6*x²+17/6*x+1
则符合条件的点有P1(4,-1),P2(1,3)两点.
∴OA=2,
∴OB=1/2*OA=1,
∵点B在y轴正半轴上,
∴点B的坐标为(0,1);
过C作CD⊥x轴,垂足为D,
∵BA⊥AC,∴∠OAB+∠CAD=90°,
又∠AOB=90°,∴∠OAB+∠OBA=90°,
∴∠CAD=∠OBA,又AB=AC,∠AOB=∠ADC=90°,
∴△AOB≌△CDA,
∴OA=CD=2,OB=AD=1,
∴OD=OA+AD=3,又C为第一象限的点,
∴点C的坐标为(3,2);
(2)∵点B和点C都在抛物线y=-5/6x²+bx+c上,
∴把B(0,1),C(3,2)代入,
得c=1且-5/6×9+3b+c=2
解得b=17/6,c=1
则抛物线的解析式为y=-5/6*x²+17/6*x+1
(3)该抛物线上存在点P,△ACP是以AC为直角边的等腰直角三角形,分三种情况:
(i)若以AC为直角边,点A为直角顶点,则延长BA至点P1,使得P1A=CA,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,如图所示,

∵AP1=CA=AB,∠MAP1=∠OAB,∠P1MA=∠OBA=90°,
∴△AMP1≌△AOB,
∴AM=AO=2,P1M=OB=1,
∴OM=OA+AM=4,
∴P1(4,-1),经检验点P1在抛物线y=-5/6*x²+17/6*x+1
ii)若以AC为直角边,点C为直角顶点,则过点C作CP2⊥AC,且使得CP2=AC,得到等腰直角三角形ACP2,过点P2作y轴的平行线,过点C作x轴的平行线,两线交于点N,如图,

同理可证△CP2N≌△ABO,
∴CN=OA=2,NP2=OB=1,
又∵C的坐标为(3,2),
∴P2(1,3),经检验P2也在抛物线y=-5/6*x²+17/6*x+1
(iii)若以AC为直角边,点C为直角顶点,则过点C作CP3⊥AC,且使得CP3=AC,得到等腰直角三角形ACP3,过点P3作x轴的平行线,过点C作y轴的平行线,两线交于点H,如图,

同理可证△CP3H≌△BAO,
∴HP3=OA=2,CH=OB=1,
又∵C的坐标为(3,2),
∴P3(5,1),经检验P3不在抛物线y=-5/6*x²+17/6*x+1
则符合条件的点有P1(4,-1),P2(1,3)两点.
看了 如图,已知点A(2,0),点...的网友还看了以下:
(2013•重庆)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接P 2020-05-15 …
如图,在平面直角坐标系中,以点 为圆心,以 长为半径作⊙M交x轴于A、B两点,交y轴于C、D两点, 2020-05-17 …
矩形ABCD,延长BC至E,使BE=BD,F是DE边上的Y中点,连接CF,BD与AC相交于点O,求 2020-05-20 …
如果一元函数f(x0,y)在y0处连续,f(x,y0)在x0处连续,那么二元函数f(x,y)在点( 2020-05-21 …
已知N,N/T2-N/T1=1怎么求T2/T1?如题,N为已知.答案貌似是N/(N-1),(但我个 2020-06-22 …
二元函数求解已知f(x,y)=(2-(x^2+y^2+4)^(1/2))/(x^2+y^2),(x 2020-07-25 …
梯形ABCD中AD平行BC∠A=90度∠C=45度AB=AD=4点E是直线AD上一点,连接BF.若 2020-08-03 …
求教,高数,连续的定义,没有看懂,为什么△y的极限是0,就称在那点连续.连续不就是该点函数值与该点左 2020-11-01 …
我是初二的学生,所以请不要用超过我目前学习内的解题方法,我解得的答案为y=x(2-2分之x),但变不 2021-01-05 …
求y^2=2px(p>0)的参数方程1以抛物线上一点(x,y)与顶点连线斜率的倒求y^2=2px(p 2021-01-22 …