早教吧作业答案频道 -->其他-->
如图1,在四边形ABCD中,DC∥AB,AD=BC,BD平分∠ABC.(1)求证:AD=DC;(2)如图2,在上述条件下,若∠A=∠ABC=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF.判断△DEF的形状并
题目详情
如图1,在四边形ABCD中,DC∥AB,AD=BC,BD平分∠ABC.
(1)求证:AD=DC;
(2)如图2,在上述条件下,若∠A=∠ABC=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF.判断△DEF的形状并证明你的结论.

(1)求证:AD=DC;
(2)如图2,在上述条件下,若∠A=∠ABC=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF.判断△DEF的形状并证明你的结论.

▼优质解答
答案和解析
(1)证明:∵DC‖AB,
∴∠CDB=∠ABD,
又∵BD平分∠ABC,
∴∠CBD=∠ABD,
∴∠CDB=∠CBD,
∴BC=DC,
又∵AD=BC,
∴AD=DC;

(2)△DEF为等边三角形,
证明:∵BC=DC(已证),CF⊥BD,
∴点F是BD的中点,
∵∠DEB=90°,∴EF=DF=BF.
∵∠ABC=60°,BD平分∠ABC,∠BDE=60°,
∴△DEF为等边三角形.
∴∠CDB=∠ABD,
又∵BD平分∠ABC,
∴∠CBD=∠ABD,
∴∠CDB=∠CBD,
∴BC=DC,
又∵AD=BC,
∴AD=DC;

(2)△DEF为等边三角形,
证明:∵BC=DC(已证),CF⊥BD,
∴点F是BD的中点,
∵∠DEB=90°,∴EF=DF=BF.
∵∠ABC=60°,BD平分∠ABC,∠BDE=60°,
∴△DEF为等边三角形.
看了 如图1,在四边形ABCD中,...的网友还看了以下:
已知f(x)在x=6处可导,且f(6)=8,f'(6)=3,则lim〔[f(x)∧2]-[f已知f 2020-05-13 …
已知定义域为R的函数f(x)在(8,+∞)上为减函数,且函数y=f(x+8)为偶函数 则( ) A 2020-05-16 …
已知定义域为R的函数f(x)在区间(8,+∞)上为减函数,且函数y=f(x+8)为偶函数则()A. 2020-06-08 …
已知定义在R上的偶函数f(x)满足f(x-4)=f(x),且在区间[0,2]上f(x)=x.若关于 2020-07-08 …
引用求和:AC==SUM(C9*$C$7*$C$6,D9*$D$7*$D$6,E9*$E$7*$E 2020-07-09 …
急求一道三角函数题定义在(-∞,+∞)上的函数f(x)的周期是兀,若在区间[0,兀]上f(x)=- 2020-07-30 …
设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0),若f(x)在区间[π6, 2020-07-31 …
设函数f(x)=Asin(ωx+φ)(Aωφ是常数,A>0ω>0)若f(x)在区间{π/6,π/2 2020-08-01 …
已知f(x)=sin(ωx+π/6)(ω>o),f(π/6)=f(π/3),且f(x)在区间(π/1 2020-10-31 …
已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),求f(6)的值由f(x+2)=-f(x) 2020-11-19 …