早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,一张矩形纸片ABCD中,AD>AB.将矩形纸片ABCD沿过点A的直线折叠,使点D落到BC边上的点D′,折痕AE交DC于点E.(1)试用尺规在图中作出点D′和折痕AE(不写作法,保留作图痕迹);(2

题目详情
如图,一张矩形纸片ABCD中,AD>AB.将矩形纸片ABCD沿过点A的直线折叠,使点D落到BC边上的点D′,折痕AE交DC于点E.
(1)试用尺规在图中作出点D′和折痕AE(不写作法,保留作图痕迹);
(2)连接DD′、AD′、ED′,则当∠ED′C=______°时,△AD′D为等边三角形;
(3)若AD=5,AB=4,求ED的长.
(4)在(3)的条件下,折痕AE上存在一点F,它到点D的距离等于它到边BC的距离,在图中画出这个点,并直接写出FD的长.
▼优质解答
答案和解析
(1)如图所示:

(2)当∠ED′C=30°时,
∵DE=D′E,∴∠ED′D=∠D′DE,
∵∠ED′C=30°,
∠ED′D+∠D′DE+∠ED′C=90°,
∴∠ED′D=∠D′DE=30°,
∴∠ADD′=60°,
∵AD=AD′,
∴△AD′D为等边三角形,
故答案为:30;

(3)∵AD=5,AB=4,
∴AD′=5,
∴BD′=
AD′2−AB2
=3,
∴CD′=5-3=2,
设DE=D′E=x,
则EC=4-x,
故EC2+DC2=DE2
即(4-x)2+22=x2
解得:x=
5
2

故ED的长为:
5
2


(4)如图所示,设PF⊥CB,
∵DP=FP,
由翻折变换的性质可得DP=D′P,
∴FP=D′P,
∴FP⊥CB,
∴D′,F,P三点构不成三角形,
∴F,D′重合分别延长AE,BC相交于点G,
∵AD平行于CB,
∴∠DAG=∠AGC,
∵∠DAG=∠D′AG,AGC=∠D′AG,
∴GD′=AD′=AD=5,
∵PD′(PF)⊥CB,
∴PD′∥AB,
∴△ABG∽△PD′G,
∵Rt△ABD′中,AD′=5,AB=4,
∴BD′=3,BG=BD′+D′G=3+5=8,
∴△ABG与△PD′G的相似比为8:5,
∴AB:PD′=8:5,
∵AB=4,
∴PD′=2.5,即相等距离为2.5.