早教吧作业答案频道 -->其他-->
如图,一张矩形纸片ABCD中,AD>AB.将矩形纸片ABCD沿过点A的直线折叠,使点D落到BC边上的点D′,折痕AE交DC于点E.(1)试用尺规在图中作出点D′和折痕AE(不写作法,保留作图痕迹);(2
题目详情

(1)试用尺规在图中作出点D′和折痕AE(不写作法,保留作图痕迹);
(2)连接DD′、AD′、ED′,则当∠ED′C=______°时,△AD′D为等边三角形;
(3)若AD=5,AB=4,求ED的长.
(4)在(3)的条件下,折痕AE上存在一点F,它到点D的距离等于它到边BC的距离,在图中画出这个点,并直接写出FD的长.
▼优质解答
答案和解析
(1)如图所示:
(2)当∠ED′C=30°时,
∵DE=D′E,∴∠ED′D=∠D′DE,
∵∠ED′C=30°,
∠ED′D+∠D′DE+∠ED′C=90°,
∴∠ED′D=∠D′DE=30°,
∴∠ADD′=60°,
∵AD=AD′,
∴△AD′D为等边三角形,
故答案为:30;
(3)∵AD=5,AB=4,
∴AD′=5,
∴BD′=
=3,
∴CD′=5-3=2,
设DE=D′E=x,
则EC=4-x,
故EC2+D′C2=D′E2,
即(4-x)2+22=x2,
解得:x=
,
故ED的长为:
.
(4)如图所示,设PF⊥CB,
∵DP=FP,
由翻折变换的性质可得DP=D′P,
∴FP=D′P,
∴FP⊥CB,
∴D′,F,P三点构不成三角形,
∴F,D′重合分别延长AE,BC相交于点G,
∵AD平行于CB,
∴∠DAG=∠AGC,
∵∠DAG=∠D′AG,AGC=∠D′AG,
∴GD′=AD′=AD=5,
∵PD′(PF)⊥CB,
∴PD′∥AB,
∴△ABG∽△PD′G,
∵Rt△ABD′中,AD′=5,AB=4,
∴BD′=3,BG=BD′+D′G=3+5=8,
∴△ABG与△PD′G的相似比为8:5,
∴AB:PD′=8:5,
∵AB=4,
∴PD′=2.5,即相等距离为2.5.

(2)当∠ED′C=30°时,
∵DE=D′E,∴∠ED′D=∠D′DE,
∵∠ED′C=30°,
∠ED′D+∠D′DE+∠ED′C=90°,
∴∠ED′D=∠D′DE=30°,
∴∠ADD′=60°,
∵AD=AD′,
∴△AD′D为等边三角形,
故答案为:30;
(3)∵AD=5,AB=4,
∴AD′=5,
∴BD′=
AD′2−AB2 |
∴CD′=5-3=2,
设DE=D′E=x,
则EC=4-x,
故EC2+D′C2=D′E2,
即(4-x)2+22=x2,
解得:x=
5 |
2 |
故ED的长为:
5 |
2 |
(4)如图所示,设PF⊥CB,
∵DP=FP,
由翻折变换的性质可得DP=D′P,
∴FP=D′P,

∴FP⊥CB,
∴D′,F,P三点构不成三角形,
∴F,D′重合分别延长AE,BC相交于点G,
∵AD平行于CB,
∴∠DAG=∠AGC,
∵∠DAG=∠D′AG,AGC=∠D′AG,
∴GD′=AD′=AD=5,
∵PD′(PF)⊥CB,
∴PD′∥AB,
∴△ABG∽△PD′G,
∵Rt△ABD′中,AD′=5,AB=4,
∴BD′=3,BG=BD′+D′G=3+5=8,
∴△ABG与△PD′G的相似比为8:5,
∴AB:PD′=8:5,
∵AB=4,
∴PD′=2.5,即相等距离为2.5.
看了 如图,一张矩形纸片ABCD中...的网友还看了以下:
矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A的对应点A′落在线段BC上, 2020-05-13 …
(2007•青岛)将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为E 2020-05-15 …
实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折 2020-06-13 …
(201七•临沂)对一张矩形纸片ABCD进行折叠,具体操作如下:第一步:先对折,使AD与BC重合, 2020-06-20 …
ABCD是一张正方形纸片,EF分别为AB,CD的中点,沿过点D的折痕将A角翻折,使得点A落在EF上 2020-06-22 …
一根轻质细线将2个薄铁垫圈A、B连接起来,一同学用手固定B,此时A、B间距为3L,A距地面为L,如 2020-07-20 …
数学兴趣小组开展以下折纸活动:(1)对折矩形ABCD,使AD和BC重合,得到折痕EF,把纸片展平; 2020-07-22 …
一根轻质细线将2个薄铁垫片A、B连接起来,一同学用手固定B,此时A、B间距为3L,A距地面为L,如图 2020-11-21 …
“苦难对于天才是一块垫脚石……对于能干的人是一笔财富,对于弱者是一个万丈深渊。”这说明()A.挫折无 2020-12-14 …
有一张矩形纸片ABCD,AB=根号3,AD=根号2,将纸片折叠,使点D落在AB边上的点D'处,折痕为 2020-12-21 …