早教吧作业答案频道 -->数学-->
已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA.(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°.①求证:∠A
题目详情
已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.
(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA.
(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°.
①求证:∠ABC=∠ADC;
②求∠CED的度数.

(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA.
(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°.
①求证:∠ABC=∠ADC;
②求∠CED的度数.

▼优质解答
答案和解析
(1)证明:∵AE平分∠BAD,
∴∠BAE=∠EAD,
∵AD∥BC,
∴∠AEB=∠EAD,
∴∠BAE=∠BEA;
(2)①证明:∵AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC;
② ∵∠ADE=3∠CDE,设∠CDE=x°,
∴∠ADE=3x°,∠ADC=2x°,
∵AB∥CD,
∴∠BAD+∠ADC=180°,
∴∠DAB=180°-2x°,
∵∠DAE=∠BAE=∠BEA=90°-x°,
又∵AD∥BC,
∴∠BED+∠ADE=180°,
∵∠AED=60°,
即90-x+60+3x=180,
∴∠CDE=x°=15°,∠ADE=45°,
∵AD∥BC,
∴∠CED=180°-∠ADE=135°.
∴∠BAE=∠EAD,
∵AD∥BC,
∴∠AEB=∠EAD,
∴∠BAE=∠BEA;
(2)①证明:∵AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC;
② ∵∠ADE=3∠CDE,设∠CDE=x°,
∴∠ADE=3x°,∠ADC=2x°,
∵AB∥CD,
∴∠BAD+∠ADC=180°,
∴∠DAB=180°-2x°,
∵∠DAE=∠BAE=∠BEA=90°-x°,
又∵AD∥BC,
∴∠BED+∠ADE=180°,
∵∠AED=60°,
即90-x+60+3x=180,
∴∠CDE=x°=15°,∠ADE=45°,
∵AD∥BC,
∴∠CED=180°-∠ADE=135°.
看了 已知AD∥BC,AB∥CD,...的网友还看了以下:
抗洪救灾小组A地段有28人,B地段有15人,现又调来29人,分配到A,B两个地段,要求A地段的人数 2020-04-26 …
抗洪救灾小组A地段现有28人,B地段又15人,现在又调来29人,分配倒A、B两个地段,要求分配后, 2020-05-22 …
已知,如图b,c为定长线段ad上的两个动点(ad长度保持一定,b在c点左侧)(1)当b,c运动到某 2020-06-05 …
1.四边形ABCD和四边形A'B'C'D'中,AB:A'B'=BC:B'C'=CB:C'D'=DA 2020-07-25 …
两直线平行同位角相等己知:线段a平行线段b求证:角1=角2如何证明? 2020-07-29 …
尺规作图已知线段a、b(a>b),求作等腰三角形ABC使底边BC=a,腰AB上的高=b.已知线段a 2020-07-30 …
作图题:(要求:用直尺、圆规作图,保留作图痕迹,不写作法.)已知:线段a与线段b.求作:线段AB,使 2020-11-06 …
已知线段a=0.3m,b=60cm,c=12dm.(1)求线段a与线段b的比.(2)如果线段a、b、 2020-11-28 …
如图,点O是线段AB的中点,点C在线段AO上,点D在线段OB上,E,F是线段AB上任意两点如图,点O 2020-12-06 …
CAD制图中画与以知线段保持一定距离的线段假设有已知不规则线段A(线段由直线曲线等构成),那么我想画 2021-01-15 …