早教吧作业答案频道 -->数学-->
函数f(x)=x²+ax+3(1)当x∈R时,f(x)≥a恒成立,求实数a的取值范围(2)当x∈-2,2时,f(x)≥a恒成立,求实数a的取值范围
题目详情
函数f(x)=x²+ax+3
(1)当x∈R时,f(x)≥a恒成立,求实数a的取值范围
(2)当x∈【-2,2】时,f(x)≥a恒成立,求实数a的取值范围
(1)当x∈R时,f(x)≥a恒成立,求实数a的取值范围
(2)当x∈【-2,2】时,f(x)≥a恒成立,求实数a的取值范围
▼优质解答
答案和解析
(1) f(x)≥a恒成立,即有:x^2+ax+3≥a恒成立,所以有x^2+ax+3-a≥0
于是考察二次函数g(x)=x^2+ax+3-a,图像开口向上,有最小值,在顶点处取得
对称轴为x=-a/2,所以最小值为,min g(x)=g(-a/2)=a^2/4-a^2/2+3-a=-a^2/4-a+3
是最小值≥0,即有-a^2/4-a+3≥0,
即解方程 a^2+4a-12≤0 得(a+6)(a-2)≤0
解得a的范围为: -6≤a≤2
(2)同理,也是求二次函数g(x)=x^2+ax+3-a的最小值,使其g(x)≥0
但这里的x,并不是没有限制,而是x∈[-2,2],所以是在[-2,2]上找g(x)的最小值
可以分类讨论:
1、对称轴x=-a/2∈[-2,2]时,即,a∈[-4,4]时,
与第(1)题一样,得 -6≤a≤2
结合条件,得 a的取值范围为: a∈[-4,2]
2、对称轴x=-a/2>2时,即 a g(x)的最小值在 x=2处取得,于是 g(x)=4+2a+3-a≥0
解得 a≥-7
结合条件,得 a的取值范围为: a∈[-7,-4)
3、对称轴x=-a/24时
g(x)的最小值在 x=-2处取得,于是 g(x)=4-2a+3-a≥0
解得 a≤7/3
与条件 a>4,矛盾,不成立
于是,综上所述,得 a的取值范围为:a∈[-7,-2] (就是把上面的取值范围并起来)
(1) f(x)≥a恒成立,即有:x^2+ax+3≥a恒成立,所以有x^2+ax+3-a≥0
于是考察二次函数g(x)=x^2+ax+3-a,图像开口向上,有最小值,在顶点处取得
对称轴为x=-a/2,所以最小值为,min g(x)=g(-a/2)=a^2/4-a^2/2+3-a=-a^2/4-a+3
是最小值≥0,即有-a^2/4-a+3≥0,
即解方程 a^2+4a-12≤0 得(a+6)(a-2)≤0
解得a的范围为: -6≤a≤2
(2)同理,也是求二次函数g(x)=x^2+ax+3-a的最小值,使其g(x)≥0
但这里的x,并不是没有限制,而是x∈[-2,2],所以是在[-2,2]上找g(x)的最小值
可以分类讨论:
1、对称轴x=-a/2∈[-2,2]时,即,a∈[-4,4]时,
与第(1)题一样,得 -6≤a≤2
结合条件,得 a的取值范围为: a∈[-4,2]
2、对称轴x=-a/2>2时,即 a g(x)的最小值在 x=2处取得,于是 g(x)=4+2a+3-a≥0
解得 a≥-7
结合条件,得 a的取值范围为: a∈[-7,-4)
3、对称轴x=-a/24时
g(x)的最小值在 x=-2处取得,于是 g(x)=4-2a+3-a≥0
解得 a≤7/3
与条件 a>4,矛盾,不成立
于是,综上所述,得 a的取值范围为:a∈[-7,-2] (就是把上面的取值范围并起来)
看了 函数f(x)=x²+ax+3...的网友还看了以下:
一道简单不等式(1)已知不等式ax2-x-2>0在a属于[1,2]上恒成立,求x的取值范围(2)已 2020-04-27 …
压轴题:设f(x)=xe^(-x),g(x)=ax^2-2ax+1.若f(x)≤g(x)在(1,+ 2020-05-13 …
f(x)=ax2+bx+c 若a=1,c=0.且|f(x)|≤1在区间(0,1]上恒成立.求b的取 2020-05-14 …
不等式3x²-loga^<0在区间(0,1/3)内恒成立,则a的取值范围是不等式3x²-loga^ 2020-05-16 …
设对于任意实数x,不等式|x+7|+|x-1|>=m恒成立.(1)求m取值范围.(2)当m取最大. 2020-05-16 …
高一数学题急需高手破解设函数Y=mx2-mx-1(1)若对一切实数x,y〈0恒成立,求m的取值范围 2020-05-17 …
已知不等式X2-X+1>2X+m.(1)解关于X不等式(2)若不等式在X在[-1,1]上恒成立,求 2020-05-20 …
1、当x∈(0,3)时,2x²+mx-1<0恒成立,求m取值范围2、当x∈(0,1/2)时,x²+ 2020-06-05 …
已知函数f(x)=x2+ax+3.(1)当x∈R时,f(x)≥a恒成立,求a的范围.(2)当x∈[ 2020-06-11 …
(1)若关于x的不等式|x-1|+|x-2|<a无解,求a的取值范围.(2)若关于x的不等式|x- 2020-07-29 …