早教吧作业答案频道 -->数学-->
函数f(x)=x²+ax+3(1)当x∈R时,f(x)≥a恒成立,求实数a的取值范围(2)当x∈-2,2时,f(x)≥a恒成立,求实数a的取值范围
题目详情
函数f(x)=x²+ax+3
(1)当x∈R时,f(x)≥a恒成立,求实数a的取值范围
(2)当x∈【-2,2】时,f(x)≥a恒成立,求实数a的取值范围
(1)当x∈R时,f(x)≥a恒成立,求实数a的取值范围
(2)当x∈【-2,2】时,f(x)≥a恒成立,求实数a的取值范围
▼优质解答
答案和解析
(1) f(x)≥a恒成立,即有:x^2+ax+3≥a恒成立,所以有x^2+ax+3-a≥0
于是考察二次函数g(x)=x^2+ax+3-a,图像开口向上,有最小值,在顶点处取得
对称轴为x=-a/2,所以最小值为,min g(x)=g(-a/2)=a^2/4-a^2/2+3-a=-a^2/4-a+3
是最小值≥0,即有-a^2/4-a+3≥0,
即解方程 a^2+4a-12≤0 得(a+6)(a-2)≤0
解得a的范围为: -6≤a≤2
(2)同理,也是求二次函数g(x)=x^2+ax+3-a的最小值,使其g(x)≥0
但这里的x,并不是没有限制,而是x∈[-2,2],所以是在[-2,2]上找g(x)的最小值
可以分类讨论:
1、对称轴x=-a/2∈[-2,2]时,即,a∈[-4,4]时,
与第(1)题一样,得 -6≤a≤2
结合条件,得 a的取值范围为: a∈[-4,2]
2、对称轴x=-a/2>2时,即 a g(x)的最小值在 x=2处取得,于是 g(x)=4+2a+3-a≥0
解得 a≥-7
结合条件,得 a的取值范围为: a∈[-7,-4)
3、对称轴x=-a/24时
g(x)的最小值在 x=-2处取得,于是 g(x)=4-2a+3-a≥0
解得 a≤7/3
与条件 a>4,矛盾,不成立
于是,综上所述,得 a的取值范围为:a∈[-7,-2] (就是把上面的取值范围并起来)
(1) f(x)≥a恒成立,即有:x^2+ax+3≥a恒成立,所以有x^2+ax+3-a≥0
于是考察二次函数g(x)=x^2+ax+3-a,图像开口向上,有最小值,在顶点处取得
对称轴为x=-a/2,所以最小值为,min g(x)=g(-a/2)=a^2/4-a^2/2+3-a=-a^2/4-a+3
是最小值≥0,即有-a^2/4-a+3≥0,
即解方程 a^2+4a-12≤0 得(a+6)(a-2)≤0
解得a的范围为: -6≤a≤2
(2)同理,也是求二次函数g(x)=x^2+ax+3-a的最小值,使其g(x)≥0
但这里的x,并不是没有限制,而是x∈[-2,2],所以是在[-2,2]上找g(x)的最小值
可以分类讨论:
1、对称轴x=-a/2∈[-2,2]时,即,a∈[-4,4]时,
与第(1)题一样,得 -6≤a≤2
结合条件,得 a的取值范围为: a∈[-4,2]
2、对称轴x=-a/2>2时,即 a g(x)的最小值在 x=2处取得,于是 g(x)=4+2a+3-a≥0
解得 a≥-7
结合条件,得 a的取值范围为: a∈[-7,-4)
3、对称轴x=-a/24时
g(x)的最小值在 x=-2处取得,于是 g(x)=4-2a+3-a≥0
解得 a≤7/3
与条件 a>4,矛盾,不成立
于是,综上所述,得 a的取值范围为:a∈[-7,-2] (就是把上面的取值范围并起来)
看了 函数f(x)=x²+ax+3...的网友还看了以下:
求值范围一元二次函数已知不等式x^+k^2-1>0对一切是实数x恒成立,求实数k的取值范围i 2020-03-30 …
急帮我这解这这几道一元二次不等式1.关于X的方程x^2-ax+a^2-1v1=0有个正根一个负根则 2020-04-27 …
不等式4^x+2^(x+1)-k>0对一切x恒成立(^为乘方),求K的范围?4的X次方+2的X+1 2020-06-03 …
一个带有参数的三次函数在闭区间负一到一内无极值点让求参数范围,为什么只要函数在负一和一处的导数值小 2020-07-12 …
已知函数f(x)=cosx+ax2-1,a∈R.(1)求证:函数f(x)是偶函数;(2)当a=1时 2020-07-20 …
已知函数f(x)=ex-(2a+e)x,a∈R.(Ⅰ)若对任意x≥1,不等式f(x)≥1恒成立,求 2020-07-21 …
(1)若关于x的不等式|x-1|+|x-2|<a无解,求a的取值范围.(2)若关于x的不等式|x- 2020-07-29 …
、(本题15分)已知函数,且对于任意实数,恒有F(x)=F(-x)。(1)求函数的解析式;(2)已知 2020-12-13 …
函数y=(x-5)/(x-a-2)在(-1,真无穷)上单调递增,则a的取值范围是,则a的取值范围是是 2020-12-22 …
如何用参数分离法解含参数函数如何用参数分离法解给出区间与区间上值域,求参数范围例如:函数f(X)=X 2021-01-22 …