早教吧作业答案频道 -->其他-->
(2012•天津)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1、x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>-14;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0
题目详情
(2012•天津)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1、x2,且x1≠x2,有下列结论:
①x1=2,x2=3;②m>-
;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).
其中,正确结论的个数是( )
A.0
B.1
C.2
D.3
①x1=2,x2=3;②m>-
1 |
4 |
其中,正确结论的个数是( )
A.0
B.1
C.2
D.3
▼优质解答
答案和解析
一元二次方程(x-2)(x-3)=m化为一般形式得:x2-5x+6-m=0,
∵方程有两个不相等的实数根x1、x2,
∴b2-4ac=(-5)2-4(6-m)=4m+1>0,
解得:m>-
,故选项②正确;
∵一元二次方程实数根分别为x1、x2,
∴x1+x2=5,x1x2=6-m,
而选项①中x1=2,x2=3,只有在m=0时才能成立,故选项①错误;
二次函数y=(x-x1)(x-x2)+m=x2-(x1+x2)x+x1x2+m=x2-5x+(6-m)+m=x2-5x+6=(x-2)(x-3),
令y=0,可得(x-2)(x-3)=0,
解得:x=2或3,
∴抛物线与x轴的交点为(2,0)或(3,0),故选项③正确.
综上所述,正确的结论有2个:②③.
故选C.
∵方程有两个不相等的实数根x1、x2,
∴b2-4ac=(-5)2-4(6-m)=4m+1>0,
解得:m>-
1 |
4 |
∵一元二次方程实数根分别为x1、x2,
∴x1+x2=5,x1x2=6-m,
而选项①中x1=2,x2=3,只有在m=0时才能成立,故选项①错误;
二次函数y=(x-x1)(x-x2)+m=x2-(x1+x2)x+x1x2+m=x2-5x+(6-m)+m=x2-5x+6=(x-2)(x-3),
令y=0,可得(x-2)(x-3)=0,
解得:x=2或3,
∴抛物线与x轴的交点为(2,0)或(3,0),故选项③正确.
综上所述,正确的结论有2个:②③.
故选C.
看了 (2012•天津)若关于x的...的网友还看了以下:
数学高手看过来~~~高手comeon!已知导函数f′(x)的下列信息:当1<x<4时,f′(x)> 2020-06-05 …
1.已知:点P(x,y)在X轴的下方,且x,y是方程组{2x+3y=2k-1的解,求K的取值范围. 2020-06-30 …
设f′(x)为f(x)的导函数,若f′(x)存在极小值点x0,则称x0为f(x)的“下凸拐点”.( 2020-07-29 …
函数的下界定义中"大于等于"中的"等于"一定要成立吗?f(x)=1/x在x属于(0,1)中有下界, 2020-07-31 …
函数的下界定义中"大于等于"中的"等于"一定要成立吗?f(x)=1/x在x属于(0,1)中有下界, 2020-07-31 …
如果对于函数f(x)定义域内任意的x,都有f(x)≥M(M为常数),称M为f(x)的下界,下界M中 2020-07-31 …
如果对于函数f(x)定义域内任意的x,都有f(x)≥M(M为常数),称M为f(x)的下界,下界M中 2020-07-31 …
如果对于函数f(x)定义域内任意的x,都有f(x)≥M(M为常数),称M为f(x)的下界,下界M中 2020-07-31 …
已知函数f(x)=ex,若函数g(x)满足f(x)≥g(x)恒成立,则称g(x)为函数f(x)的下 2020-07-31 …
m分别为何实数时,复数z=(m^2+5m+6)+(m^2-2m-15)i(1)表示的点位於x轴的下方 2020-11-01 …