早教吧作业答案频道 -->数学-->
(2014•河北)图1和图2中,优弧AB所在⊙O的半径为2,AB=23.点P为优弧AB上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是,当BP经过点O时,∠AB
题目详情
(2014•河北)图1和图2中,优弧
所在⊙O的半径为2,AB=2
.点P为优弧
上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.
(1)点O到弦AB的距离是______,当BP经过点O时,∠ABA′=______°;
(2)当BA′与⊙O相切时,如图2,求折痕的长:
(3)若线段BA′与优弧
只有一个公共点B,设∠ABP=α.确定α的取值范围.

![]() |
AB |
3 |
![]() |
AB |
(1)点O到弦AB的距离是______,当BP经过点O时,∠ABA′=______°;
(2)当BA′与⊙O相切时,如图2,求折痕的长:
(3)若线段BA′与优弧
![]() |
AB |

▼优质解答
答案和解析
(1)①过点O作OH⊥AB,垂足为H,连接OB,如图1①所示.
∵OH⊥AB,AB=2
,
∴AH=BH=
.
∵OB=2,
∴OH=1.
∴点O到AB的距离为1.
②当BP经过点O时,如图1②所示.
∵OH=1,OB=2,OH⊥AB,
∴sin∠OBH=
=
.
∴∠OBH=30°.
由折叠可得:∠A′BP=∠ABP=30°.
∴∠ABA′=60°.
故答案为:1、60.
(2)过点O作OG⊥BP,垂足为G,如图2所示.
∵BA′与⊙O相切,
∴OB⊥A′B.
∴∠OBA′=90°.
∵∠OBH=30°,
∴∠ABA′=120°.
∴∠A′BP=∠ABP=60°.
∴∠OBP=30°.
∴OG=
OB=1.
∴BG=
.
∵OG⊥BP,
∴BG=PG=
.
∴BP=2
.
∴折痕的长为2
.
(3)若线段BA′与优弧
只有一个公共点B,
Ⅰ.当点A′在⊙O的内部时,此时α的范围是0°<α<30°.
Ⅱ.当点A′在⊙O的外部时,此时α的范围是60°≤α<120°.
综上所述:线段BA′与优弧

∵OH⊥AB,AB=2
3 |
∴AH=BH=
3 |
∵OB=2,
∴OH=1.
∴点O到AB的距离为1.
②当BP经过点O时,如图1②所示.

∵OH=1,OB=2,OH⊥AB,
∴sin∠OBH=
OH |
OB |
1 |
2 |
∴∠OBH=30°.
由折叠可得:∠A′BP=∠ABP=30°.
∴∠ABA′=60°.
故答案为:1、60.
(2)过点O作OG⊥BP,垂足为G,如图2所示.
∵BA′与⊙O相切,

∴OB⊥A′B.
∴∠OBA′=90°.
∵∠OBH=30°,
∴∠ABA′=120°.
∴∠A′BP=∠ABP=60°.
∴∠OBP=30°.
∴OG=
1 |
2 |
∴BG=
3 |
∵OG⊥BP,
∴BG=PG=
3 |
∴BP=2
3 |
∴折痕的长为2
3 |
(3)若线段BA′与优弧
![]() |
AB |
Ⅰ.当点A′在⊙O的内部时,此时α的范围是0°<α<30°.
Ⅱ.当点A′在⊙O的外部时,此时α的范围是60°≤α<120°.
综上所述:线段BA′与优弧
作业搜用户
2017-10-23
看了 (2014•河北)图1和图2...的网友还看了以下:
如图,在梯形ABCD中,AB‖CD,∠A=90°,AB=3,CD=6,BE⊥BC交直线AD于点E. 2020-05-15 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
集合题不懂,设Z为整数集合,A={x|x∈Z,x>x},B={x|x∈Z,x≠x},则(A)A=B 2020-06-18 …
分别将下列条件中的哪两个条件组合,可以判定四边形ABCD是平行四边形?1.AB//CD2.BC// 2020-07-21 …
如图,在三角形ABC中,AB=AC=5,BC=6,D,E分别是边AB,AC上的两个动点(D不与AB 2020-07-22 …
1.集合并、交运算的一些结论:A∩BAA∩BBA∩AAA∩空集空集A∩BB∩AAA∪B,BA∪BA 2020-07-30 …
数学问题p(空集)=o,但是p(AB)=0的时侯,能否推出AB是空集?答案是:不一定;为什么呢?说 2020-07-30 …
1.若集合A={x|(a-1)x^2+2x+1=o}中只含有一个元素,求实数a2.已知集合A={1, 2020-12-07 …
用a表示骨髓瘤细胞,b表示已免疫的B淋巴细胞,则细胞融合过程中两次筛选的目的分别为()A.A.aA. 2021-01-01 …
AB是圆O的直径,E是半圆上的一点(E不与AB重合),点C是BE延长线上的一点,且CD垂直于AB,垂 2021-01-10 …