早教吧作业答案频道 -->其他-->
(2014•甘孜州)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)
题目详情

(1)判断DE与⊙O的位置关系,并说明理由;
(2)求证:BC2=2CD•OE;
(3)若cos∠BAD=
3 |
5 |
14 |
3 |
▼优质解答
答案和解析
(1)证明:连接OD,BD,
∵AB为圆O的直径,
∴∠ADB=90°,
在Rt△BDC中,E为斜边BC的中点,
∴CE=DE=BE=
BC,
∴∠C=∠CDE,
∵OA=OD,
∴∠A=∠ADO,
∵∠ABC=90°,即∠C+∠A=90°,
∴∠ADO+∠CDE=90°,即∠ODE=90°,
∴DE⊥OD,又OD为圆的半径,
∴DE为圆O的切线;
(2)证明:∵E是BC的中点,O点是AB的中点,
∴OE是△ABC的中位线,
∴AC=2OE,
∵∠C=∠C,∠ABC=∠BDC,
∴△ABC∽△BDC,
∴
=
,即BC2=AC•CD.
∴BC2=2CD•OE;
(3)∵cos∠BAD=
,
∴sin∠BAC=
=
,
又∵BE=
,E是BC的中点,即BC=
,
∴AC=
.
又∵AC=2OE,
∴OE=
AC=
.

∵AB为圆O的直径,
∴∠ADB=90°,
在Rt△BDC中,E为斜边BC的中点,
∴CE=DE=BE=
1 |
2 |
∴∠C=∠CDE,
∵OA=OD,
∴∠A=∠ADO,
∵∠ABC=90°,即∠C+∠A=90°,
∴∠ADO+∠CDE=90°,即∠ODE=90°,
∴DE⊥OD,又OD为圆的半径,
∴DE为圆O的切线;
(2)证明:∵E是BC的中点,O点是AB的中点,
∴OE是△ABC的中位线,
∴AC=2OE,
∵∠C=∠C,∠ABC=∠BDC,
∴△ABC∽△BDC,
∴
BC |
CD |
AC |
BC |
∴BC2=2CD•OE;
(3)∵cos∠BAD=
3 |
5 |
∴sin∠BAC=
BC |
AC |
4 |
5 |
又∵BE=
14 |
3 |
28 |
3 |
∴AC=
35 |
3 |
又∵AC=2OE,
∴OE=
1 |
2 |
35 |
6 |
看了 (2014•甘孜州)如图,在...的网友还看了以下:
如图,直角坐标系中一条圆弧经过网格点A,B,C,1.连接AD,CD求圆D的半径和扇形ADC的圆心角 2020-05-16 …
如图,圆O与圆D相交于A,B两点,BC为圆D的切线,点C在圆O上,且AB=BC.(1)证明:点O在 2020-06-09 …
如图,在平面直角坐标系中,点A的坐标是(4,3),动圆D经过A、O,分别与两坐标轴的正半轴交于点E 2020-06-13 …
有一个大圆,里面有2个半圆和1个圆.圆A直径9厘有一个大圆,里面有2个半圆和1个圆.半圆A(半圆) 2020-06-19 …
下列说法错误的是A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径 2020-07-20 …
扇形OAB的弦AB=18,半径为6的圆C恰与OA、OB和弧AB相切,圆D又与圆C、OA和OB相切, 2020-07-21 …
已知圆C:(X-3)^2+(Y-4)^2=4,直线L1过定点A(1.0),若L1与圆C相切,求直线 2020-07-31 …
下面不是轴对称图形的是()A.长方形B.平行四边形C.圆D.半圆 2020-08-03 …
如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD于点E,交 2020-11-08 …
请给我仔细讲解一下下面这道题:有一矩形ABCD的长为5,宽为3,以点D为圆心作圆,A,B,C三点钟有 2020-12-31 …