早教吧作业答案频道 -->其他-->
如图,已知AB是⊙O的直径,点H在⊙O上,E是HB的中点,过点E作EC⊥AH,交AH的延长线于点C.连接AE,过点E作EF⊥AB于点F.(1)求证:CE是⊙O的切线;(2)若FB=2,tan∠CAE=22,求OF的长.
题目详情
如图,已知AB是⊙O的直径,点H在⊙O上,E是 ![]() |
| HB |
(1)求证:CE是⊙O的切线;
(2)若FB=2,tan∠CAE=
| ||
| 2 |
▼优质解答
答案和解析
(1)证明:连接OE,
∵点E为弧HB的中点,
∴∠1=∠2,
∵OE=OA,
∴∠3=∠2,
∴∠3=∠1,
∴OE∥AC,
∵AC⊥CE,
∴OE⊥CE,
∵点E在⊙O上,
∴CE是⊙O的切线;
(2)连接EB,
∵AB是⊙O的直径,
∴∠AEB=90°,
∵EF⊥AB于点F,
∴∠AFE=∠EFB=90°,
∴∠2+∠AEF=∠4+∠AEF=90°,
∴∠2=∠4=∠1.
∵tan∠CAE=
,
∴tan∠4=
,
在Rt△EFB中,∠EFB=90°,FB=2,tan∠4=
,
∴EF=2
,
在Rt△AEF中,tan∠2=
,EF=2
,
∴AF=4,
∴AB=AF+EF=6,
∴OB=3,
∴OF=OB-BF=1.
(1)证明:连接OE,∵点E为弧HB的中点,
∴∠1=∠2,
∵OE=OA,
∴∠3=∠2,
∴∠3=∠1,
∴OE∥AC,
∵AC⊥CE,
∴OE⊥CE,
∵点E在⊙O上,
∴CE是⊙O的切线;
(2)连接EB,
∵AB是⊙O的直径,
∴∠AEB=90°,
∵EF⊥AB于点F,
∴∠AFE=∠EFB=90°,
∴∠2+∠AEF=∠4+∠AEF=90°,
∴∠2=∠4=∠1.
∵tan∠CAE=
| ||
| 2 |
∴tan∠4=
| ||
| 2 |
在Rt△EFB中,∠EFB=90°,FB=2,tan∠4=
| ||
| 2 |
∴EF=2
| 2 |
在Rt△AEF中,tan∠2=
| ||
| 2 |
| 2 |
∴AF=4,
∴AB=AF+EF=6,
∴OB=3,
∴OF=OB-BF=1.
看了 如图,已知AB是⊙O的直径,...的网友还看了以下:
已知f(x)是定义在[-e,e]上的奇函数,当x€(0.e](€是属于符号)时,f(x)=e^x+ 2020-05-13 …
若函数f(x)=e^x.sinx,则此图像在点(4,f(4))处的切线的倾斜角为f(x)=e^x. 2020-05-16 …
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,求a值.∵f(x)=e^x/a+a/e^ 2020-05-17 …
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
食物链中的数量变化关系以题为例b,c,d以a为食,e以d为食,f以e为食,g以b,c,f为食(图你 2020-05-23 …
探索如图,画∠AOB=120°及角平分线OC,把三角形的60°角的顶点放在OC上一点D处,绕点D旋 2020-06-02 …
某同学用显微镜观察洋葱鳞片叶内表皮细胞时看到了如图所示几幅图象,这几幅图象在操作过程中出现的顺序依 2020-07-01 …
方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)表示的曲线关于x+y=0成轴对称图形,则 2020-07-09 …
正方形的6个面分别写着A、B、C、D、E、F,与B、C、E相对的分别是哪个面?F在上面图一上F,前 2020-07-31 …
设f(x)=ax2+bx+c(a,b,c∈R),e为自然对数的底数.若f′(x)lnx>f(x)x 2020-08-02 …
