(2006•哈尔滨)已知,如图,AD为Rt△ABC斜边BC上的高,点E为DA延长线上一点,连接BE,过点C作CF⊥BE于点F,交AB、AD于M、N两点.(1)若线段AM、AN的长是关于x的一元二次方程x2-2mx+n2-mn+54m2=0的
(2006•哈尔滨)已知,如图,AD为Rt△ABC斜边BC上的高,点E为DA延长线上一点,连接BE,过点C作CF⊥BE于点F,交AB、AD于M、N两点.
(1)若线段AM、AN的长是关于x的一元二次方程x2-2mx+n2-mn+m2=0的两个实数根,求证:AM=AN;
(2)若AN=,DN=,求DE的长;
(3)若在(1)的条件下,S△AMN:S△ABE=9:64,且线段BF与EF的长是关于y的一元二次方程5y2-16ky+10k2+5=0的两个实数根,求BC的长.
答案和解析
(1)证明:△=(-2m)
2-4(n
2-mn+
m2)=-(m-2n)2≥0,
∴(m-2n)2≤0,
∴m-2n=0,
∴△=0
∴一元二次方程x2-2mx+n2-mn+m2=0有两个相等实根,
∴AM=AN.
(2)∵∠BAC=90°,AD⊥BC,
∴∠ADC=∠ADB=90°,
∠DAC=∠DBA,
∴△ADC∽△BDA,
∴=,
∴AD2=BD•DC,
∵CF⊥BE,
∴∠FCB+∠EBD=90°,
∵∠E+∠EBD=90°,
∴∠E=∠FCB,
∵∠NDC=∠EDB=90°,
∴△EBD∽△CND,
∴△ADC∽△BDA,
∴=,
∴BD•DC=ED•DN,
∴AD2=ED•DN,
∵AN=,DN=,
∴AD=DN+AN=3,
∴32=DE,
∴DE=8.
(3)由(1)知AM=AN,
∴∠AMN=∠ANM
∵∠AMN+∠CAN=90°,∠DNC+∠NCD=90°,
∴∠ACM=∠NCD
∵∠BMF+∠FBM=90°,∠AMC+∠ACM=90°,
∴∠ACM=∠FBM
由(2)可知∠E=∠FCB,
∴∠ABE=∠E,
∴AB=AE
过点M作MG⊥AN于点G
由MG∥BD得=,
∴===,
∴=,
∴==,
过点A作AH⊥EF于点H,
由AH∥FN,
得==,
设EH=8a,则FH=3a,
∵AE=AB,
∴BH=HE=8a,
∴BF=5a,EF=11a,
由根与系数关系得, | BF+EF=16a=k | BF•EF=55a2=2k2+1 |
| |
,
解得:a=±,
∵a>0,a=,
∴BF=,
由∠ACM=∠MCB,∠DAC=∠DBA可知△ACN∽△BCM,
∴==
设AC=3b,则BC=5b
在Rt△ABC中,有AB=4b.
∴AM=b.
在Rt△ACM中,有MC=b
由△ACM∽△FCB得=,∴=,
∴BC=5.
(1/2)将两个数a=17b=8,交换得a等于8,b等于17,下面语句正确的一组是?a,a等于b, 2020-04-26 …
如图,在直角坐标平面内有两点A(0,2)、B(-2,0),且A、B两点之间的距离等于a(a为大于0 2020-05-16 …
直线y=kx(k>0)与双曲线y=x分之2于A,B两点,若A,B两点左边分别是A(x1,y1),B 2020-06-14 …
已知椭圆(x^2/a^2)+(y^2/b^2)=1(a大于b大于0)的两个焦点为F1(-c,0), 2020-06-21 …
用尺规作一个角的角平分线的示意图如下,作法是:以O为圆心作一圆弧交角的两边于A、B两点;再分别以A 2020-06-22 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)与X轴的正方向交于A,0为坐标原点,以OA 2020-06-29 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A(1)诺2属于A,则在A中还有另 2020-06-29 …
椭圆题232.求椭圆X^2/9+Y^2/16=1上的点到直线L:X+Y-7=0的最短距离3.与向量 2020-06-30 …
椭圆x^2/a^2+y^2/b^2=1(a>b>0)的右焦点为F,离心率是1/2,过F作直线l交椭 2020-08-01 …
(2012•浙江模拟)已知抛物线x2=4y.(Ⅰ)过抛物线焦点F,作直线交抛物线于M,N两点,求|M 2020-11-27 …