早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设f(x)=12x+2,利用课本中推导等差数列前n项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值是3232.

题目详情
f(x)=
1
2x+
2
,利用课本中推导等差数列前n项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值是
3
2
3
2
▼优质解答
答案和解析
f(x)=
1
2x+
2

∴f(1-x)=
1
21−x+
2
=
2X
2
(2x+
2
)

∴f(x)+f(1-x)=
2
2

∴f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)
=6×
2
2
=3
2

故答案为:3
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号