早教吧 育儿知识 作业答案 考试题库 百科 知识分享

函数连续性问题有f(x,y)={2xy/(x^2+y^2)(x,y都不等于0)0(x=0,y=0)}求证:f(x,y)分别对变量x,y连续,但在(0,0)不连续

题目详情
函数连续性问题
有f(x,y)={2xy/(x^2+y^2) (x,y都不等于0)
0 (x=0,y=0) }
求证:f(x,y)分别对变量x,y连续,但在(0,0)不连续
▼优质解答
答案和解析
证f(x,y)对变量x连续
对任意x1不等于0,
lim(x->x1)f(x,y)
=lim(x->x1)(2xy/(x^2+y^2))
=2x1*y/(x1^2+y^2)=f(x1,y)
又lim(x->0)f(x,y)
=lim(x->0)(2xy/(x^2+y^2))
=2*0*y/(0^2+y^2)=f(0,y)
所以f(x,y)对变量x连续
同理可证f(x,y)对变量y连续
证f(x,y)在(0,0)不连续
设y=kx(k不等于0)
lim(x->0,y->0)f(x,y)
=lim(x->0,y->0))(2xy/(x^2+y^2))
=lim(x->0,y->0))(2x*kx/(x^2+(kx)^2))
=lim(x->0,y->0))(2k/(1+k^2))
=2k/(1+k^2)
可见当k不等于0时,lim(x->0,y->0)f(x,y)不等于
f(0,0),从而f(x,y)在(0,0)不连续