早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点(1)求证:GN⊥AC;(2)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC.并给出证明.

题目详情
一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点

(1)求证:GN⊥AC;
(2)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC.并给出证明.
▼优质解答
答案和解析
证明:由三视图可得直观图为直三棱柱且底面ADF中AD⊥DF,DF=AD=DC
(1)连接DB,可知B、N、D共线,且AC⊥DN
又FD⊥AD,FD⊥CD,
∴FD⊥面ABCD
∴FD⊥AC
∴AC⊥面FDN,GN⊂面FDN
∴GN⊥AC
(2)点P与点A重合时,GP∥面FMC
证明:取DC中点S,连接AS、GS、GA
∵G是DF的中点,
∴GS∥FC,AS∥CM
∴面GSA∥面FMC
GA⊂面GSA
∴GA∥面FMC
即GP∥面FMC
看了 一个多面体的直观图和三视图如...的网友还看了以下: