早教吧作业答案频道 -->数学-->
一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点(1)求证:GN⊥AC;(2)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC.并给出证明.
题目详情
一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点

(1)求证:GN⊥AC;
(2)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC.并给出证明.

(1)求证:GN⊥AC;
(2)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC.并给出证明.
▼优质解答
答案和解析
证明:由三视图可得直观图为直三棱柱且底面ADF中AD⊥DF,DF=AD=DC
(1)连接DB,可知B、N、D共线,且AC⊥DN
又FD⊥AD,FD⊥CD,
∴FD⊥面ABCD
∴FD⊥AC
∴AC⊥面FDN,GN⊂面FDN
∴GN⊥AC
(2)点P与点A重合时,GP∥面FMC
证明:取DC中点S,连接AS、GS、GA
∵G是DF的中点,
∴GS∥FC,AS∥CM
∴面GSA∥面FMC
GA⊂面GSA
∴GA∥面FMC
即GP∥面FMC
(1)连接DB,可知B、N、D共线,且AC⊥DN
又FD⊥AD,FD⊥CD,
∴FD⊥面ABCD
∴FD⊥AC
∴AC⊥面FDN,GN⊂面FDN
∴GN⊥AC
(2)点P与点A重合时,GP∥面FMC
证明:取DC中点S,连接AS、GS、GA
∵G是DF的中点,
∴GS∥FC,AS∥CM
∴面GSA∥面FMC
GA⊂面GSA
∴GA∥面FMC
即GP∥面FMC
看了 一个多面体的直观图和三视图如...的网友还看了以下:
如图所示,在正方形abcd中,P是对角线AB上的任意一点如图所示,在正方形ABCD中,P是对角线A 2020-04-26 …
设P(x+a,y1),Q(x,y2),R(2+a,y3)是函数f(x)=y的反函数图象上不同的三点 2020-05-02 …
已知函数f(x)=x+2/x的定义域为(0,+),设点P是函数f(x)图象上的任意一点,设p是函数 2020-05-14 …
有一个力F,它在不断增大.某人以此为条件,应用P=Fv进行了如下推导:根据P=Fv,F增大则P增大 2020-06-07 …
条件概率问题P(E|F)=P(EF)/P(F)这个是如何从最原始的公式推导出来的?另外P(EF)我 2020-07-09 …
自考.工程经济学.(F/P,8%,5)=1.469(P/F,8%,5)=0.6806(F/A,8% 2020-07-18 …
还有一道题:(P/F,5%,1)=0.9524;(P/F,5%,5)=0.7835(F/P,5%, 2020-07-18 …
有一个力F,它在不断增大.某人以此为条件,应用P=Fv进行如下推导.根据P=Fv,F增大则P增大; 2020-07-20 …
(1)有一个力F它在不断增大,某人以此为条件,应用P=FV进行了如推论根据P=FV,F增大则P增大 2020-07-30 …
已知文法G:(1)E→E+T|T(2)T→T*F|F(3)F→P↑F|P(4)P→(E)|i1.已知 2020-12-07 …