早教吧作业答案频道 -->数学-->
已知数列{an}的前n项和为Sn,且a1=1/2,a(n+1)=(n+1)an/2n,(1)求{an}的通项公式;(2)设bn=n(2-Sn),n属于N*,若集合M={n|bn大于等于μ,n属于N*}恰有4个元素,求实数μ的取值范围.
题目详情
已知数列{an}的前n项和为Sn,且a1=1/2,a(n+1)=(n+1)an/2n,(1)求{an}的通项公式;(2)设bn=n(2-Sn),n属于N*,若集合M={n|bn大于等于μ,n属于N*}恰有4个元素,求实数μ的取值范围.
▼优质解答
答案和解析
(1)
a(n+1)=(n+1)an/(2n)
a(n+1)/(n+1) = (1/2) (an/n)
{an/n} 是等比数列,q=1/2
an/n = (1/2)^(n-1) .( a1/1)
= (1/2)^n
an = n.(1/2)^n
(2)
let
S = 1.(1/2)^1+2(1/2)^2+.+n.(1/2)^n (1)
(1/2)S = 1.(1/2)^2+2(1/2)^3+.+n.(1/2)^(n+1) (2)
(1) -(2)
(1/2)S = (1/2 + 1/2^2+...+1/2^n)-n(1/2)^(n+1)
= (1-1/2^n) - n(1/2)^(n+1)
S = 2 - (n+2)(1/2)^n
Sn =a1+a2+...+an
= S
= 2 - (n+2)(1/2)^n
bn = n(2-Sn)
= n(n+2)(1/2)^n
let
f(x) = x(x+2) (1/2)^x
f'(x) =( -x(x+2)ln2 + (2x+2) ) (1/2)^x =0
-x(x+2)ln2 + (2x+2)=0
(ln2)x^2 -(2-2ln2)x - 2 =0
x = 1.31
b1= 3(1/2)^1 = 3/2
b2 = 8(1/2)^2 = 2
max bn= b2 = 2
b3 = 15(1/8) = 15/8
b4 = 24(1/16) = 3/2
b5 = 35/32
M={n|bn>μ,n属于N*}恰有4个元素
35/32
a(n+1)=(n+1)an/(2n)
a(n+1)/(n+1) = (1/2) (an/n)
{an/n} 是等比数列,q=1/2
an/n = (1/2)^(n-1) .( a1/1)
= (1/2)^n
an = n.(1/2)^n
(2)
let
S = 1.(1/2)^1+2(1/2)^2+.+n.(1/2)^n (1)
(1/2)S = 1.(1/2)^2+2(1/2)^3+.+n.(1/2)^(n+1) (2)
(1) -(2)
(1/2)S = (1/2 + 1/2^2+...+1/2^n)-n(1/2)^(n+1)
= (1-1/2^n) - n(1/2)^(n+1)
S = 2 - (n+2)(1/2)^n
Sn =a1+a2+...+an
= S
= 2 - (n+2)(1/2)^n
bn = n(2-Sn)
= n(n+2)(1/2)^n
let
f(x) = x(x+2) (1/2)^x
f'(x) =( -x(x+2)ln2 + (2x+2) ) (1/2)^x =0
-x(x+2)ln2 + (2x+2)=0
(ln2)x^2 -(2-2ln2)x - 2 =0
x = 1.31
b1= 3(1/2)^1 = 3/2
b2 = 8(1/2)^2 = 2
max bn= b2 = 2
b3 = 15(1/8) = 15/8
b4 = 24(1/16) = 3/2
b5 = 35/32
M={n|bn>μ,n属于N*}恰有4个元素
35/32
看了 已知数列{an}的前n项和为...的网友还看了以下:
设数列an的前n项和为sn=n*2+2n+4(n属于n+(1)写出这个数列的前三项(2)证明数列a 2020-04-07 …
已知f(x)=ax^2+a^2x+2b-a^3(1).当X属于(2,6)时,f(x)>0;X属于( 2020-04-27 …
金属晶体(4)请解析各个选项物质结构理论指出:金属键越强,其金属的硬度越大,熔、沸点越高.研究表明 2020-05-13 …
等比数列{an}的前n项和为Sn,已知对任意的n属于N*.点(n,Sn)均在函数y=b^x+r(b 2020-05-13 …
数学牛人进!请用适当的符号表示下列各题中集合A,B之间的关系(最好每题都附有讲解):1.A={x| 2020-05-13 …
4中得常数项是不是多项式中得项,比如2A+3a-2中,2是常数项,但属不属于项? 2020-05-14 …
在等差数列{an}中,a3+a4+a5=84 a9=73(1)求数列{an}的通项公式 (2)对任 2020-05-16 …
项目立项包括:项目建议、项目可行性分析、项目审批、项目招投标、项目合同谈判5个阶段、()属于项目可 2020-05-26 …
项目论证是确定项目是否实施的依据,(1)不属于项目建设方项目论证的原则。(2)不属于项目建设方项目 2020-05-26 …
已知函数fx=x+1/x,x属于[-2,-1].fx=-2,x属于[-1,1/2].x-1/x,x 2020-06-06 …