早教吧作业答案频道 -->数学-->
已知数列{an}的前n项和为Sn,且a1=1/2,a(n+1)=(n+1)an/2n,(1)求{an}的通项公式;(2)设bn=n(2-Sn),n属于N*,若集合M={n|bn大于等于μ,n属于N*}恰有4个元素,求实数μ的取值范围.
题目详情
已知数列{an}的前n项和为Sn,且a1=1/2,a(n+1)=(n+1)an/2n,(1)求{an}的通项公式;(2)设bn=n(2-Sn),n属于N*,若集合M={n|bn大于等于μ,n属于N*}恰有4个元素,求实数μ的取值范围.
▼优质解答
答案和解析
(1)
a(n+1)=(n+1)an/(2n)
a(n+1)/(n+1) = (1/2) (an/n)
{an/n} 是等比数列,q=1/2
an/n = (1/2)^(n-1) .( a1/1)
= (1/2)^n
an = n.(1/2)^n
(2)
let
S = 1.(1/2)^1+2(1/2)^2+.+n.(1/2)^n (1)
(1/2)S = 1.(1/2)^2+2(1/2)^3+.+n.(1/2)^(n+1) (2)
(1) -(2)
(1/2)S = (1/2 + 1/2^2+...+1/2^n)-n(1/2)^(n+1)
= (1-1/2^n) - n(1/2)^(n+1)
S = 2 - (n+2)(1/2)^n
Sn =a1+a2+...+an
= S
= 2 - (n+2)(1/2)^n
bn = n(2-Sn)
= n(n+2)(1/2)^n
let
f(x) = x(x+2) (1/2)^x
f'(x) =( -x(x+2)ln2 + (2x+2) ) (1/2)^x =0
-x(x+2)ln2 + (2x+2)=0
(ln2)x^2 -(2-2ln2)x - 2 =0
x = 1.31
b1= 3(1/2)^1 = 3/2
b2 = 8(1/2)^2 = 2
max bn= b2 = 2
b3 = 15(1/8) = 15/8
b4 = 24(1/16) = 3/2
b5 = 35/32
M={n|bn>μ,n属于N*}恰有4个元素
35/32
a(n+1)=(n+1)an/(2n)
a(n+1)/(n+1) = (1/2) (an/n)
{an/n} 是等比数列,q=1/2
an/n = (1/2)^(n-1) .( a1/1)
= (1/2)^n
an = n.(1/2)^n
(2)
let
S = 1.(1/2)^1+2(1/2)^2+.+n.(1/2)^n (1)
(1/2)S = 1.(1/2)^2+2(1/2)^3+.+n.(1/2)^(n+1) (2)
(1) -(2)
(1/2)S = (1/2 + 1/2^2+...+1/2^n)-n(1/2)^(n+1)
= (1-1/2^n) - n(1/2)^(n+1)
S = 2 - (n+2)(1/2)^n
Sn =a1+a2+...+an
= S
= 2 - (n+2)(1/2)^n
bn = n(2-Sn)
= n(n+2)(1/2)^n
let
f(x) = x(x+2) (1/2)^x
f'(x) =( -x(x+2)ln2 + (2x+2) ) (1/2)^x =0
-x(x+2)ln2 + (2x+2)=0
(ln2)x^2 -(2-2ln2)x - 2 =0
x = 1.31
b1= 3(1/2)^1 = 3/2
b2 = 8(1/2)^2 = 2
max bn= b2 = 2
b3 = 15(1/8) = 15/8
b4 = 24(1/16) = 3/2
b5 = 35/32
M={n|bn>μ,n属于N*}恰有4个元素
35/32
看了 已知数列{an}的前n项和为...的网友还看了以下:
a1=1,an+1=2an+2^n 设bn=an/2^n-1 1证明bn是等差数列 2求an前n项 2020-05-15 …
若M={x|n=x/2,n∈Z},N={x|n=x+1/2,n∈Z},则M∩N等于A.空集B.{空 2020-05-20 …
求教微积分的题题证明数列an=(1+1/n)n+1严格单调减少有下界,并求liman证明不等式(1 2020-06-10 …
已知数列{an}的前n项和为Sn,且a1=1/2,a(n+1)=(n+1)an/2n,(1)求{a 2020-06-12 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
设集合A={(x,y)|x=m,y=3m+1,属于N*}(N*就是1、2、3、4、5等等),B={ 2020-07-30 …
数学归纳法为什么要设k?数学归纳法证明的第二步是先设n=k假设n=k时命题成立证明n=k+1时命题 2020-08-01 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
设数列an满足a1=2,a(m+n)+a(m-n)-m+n=1/2(a2m+a2n)..设数列an满 2020-10-31 …
已知n为正偶数,用数学归纳法证明1-12+13-14+…+1n−1=2(1n+2+1n+4+…+12 2020-11-07 …