早教吧作业答案频道 -->数学-->
证明对於所有自然数n,n(n+1)(n+2)(n+3)能被12整除
题目详情
证明对於所有自然数n,n(n+1)(n+2)(n+3)能被12整除
▼优质解答
答案和解析
一个数被3除的余数有3种可能:0、1、2
(1)若n被3除余0,则n(n+1)(n+2)(n+3)能被3整除;
(2)若n被3除余1,则可设n=3r+1(r为自然数),则n+2=3(r+1),推出 n(n+1)(n+2)(n+3)能被3整除;
(3)若n被3除余2,则可设n=3r+2(r为自然数),则n+1=3(r+1),推出 n(n+1)(n+2)(n+3)能被3整除;
总之,n(n+1)(n+2)(n+3)能被3整除.
显然4个连续自然数中必有2个偶数,它们相乘能被4整除,于是n(n+1)(n+2)(n+3)也能被4整除.
由于3和4互质,所以n(n+1)(n+2)(n+3)能被12整除.
这道题不需要用数学归纳法~
如果硬要用数学归纳法么
(1)当n=1时, n(n+1)(n+2)(n+3)=12,能被12整除;
(2)假设当n=k时,n(n+1)(n+2)(n+3)=k(k+1)(k+2)(k+3),能被12整除,
那么当n=k+1时,n(n+1)(n+2)(n+3)=(k+1)(k+2)(k+3)(k+4)=k(k+1)(k+2)(k+3)+4(k+1)(k+2)(k+3),
由前一种证法可以看出,连续3个自然数中必有一个为3的倍数,故4(k+1)(k+2)(k+3)能被12整除,又由假设k(k+1)(k+2)(k+3)能被12整除,得出k(k+1)(k+2)(k+3)+4(k+1)(k+2)(k+3)能被12整除.
所以对于任意的n, n(n+1)(n+2)(n+3)能被12整除.
(1)若n被3除余0,则n(n+1)(n+2)(n+3)能被3整除;
(2)若n被3除余1,则可设n=3r+1(r为自然数),则n+2=3(r+1),推出 n(n+1)(n+2)(n+3)能被3整除;
(3)若n被3除余2,则可设n=3r+2(r为自然数),则n+1=3(r+1),推出 n(n+1)(n+2)(n+3)能被3整除;
总之,n(n+1)(n+2)(n+3)能被3整除.
显然4个连续自然数中必有2个偶数,它们相乘能被4整除,于是n(n+1)(n+2)(n+3)也能被4整除.
由于3和4互质,所以n(n+1)(n+2)(n+3)能被12整除.
这道题不需要用数学归纳法~
如果硬要用数学归纳法么
(1)当n=1时, n(n+1)(n+2)(n+3)=12,能被12整除;
(2)假设当n=k时,n(n+1)(n+2)(n+3)=k(k+1)(k+2)(k+3),能被12整除,
那么当n=k+1时,n(n+1)(n+2)(n+3)=(k+1)(k+2)(k+3)(k+4)=k(k+1)(k+2)(k+3)+4(k+1)(k+2)(k+3),
由前一种证法可以看出,连续3个自然数中必有一个为3的倍数,故4(k+1)(k+2)(k+3)能被12整除,又由假设k(k+1)(k+2)(k+3)能被12整除,得出k(k+1)(k+2)(k+3)+4(k+1)(k+2)(k+3)能被12整除.
所以对于任意的n, n(n+1)(n+2)(n+3)能被12整除.
看了 证明对於所有自然数n,n(n...的网友还看了以下:
8年级数学题:3的n次方+m能被13整除,证明3的n+3次方能被13整除.急用,谢谢刚知道:3^( 2020-05-15 …
证明对於所有自然数n,n(n+1)(n+2)(n+3)能被12整除 2020-06-12 …
若整数a能被整数b整除,则一定存在整数n,使得ab=n,即a=bn.例如若整数a能被整数3整除,则 2020-06-16 …
一个数被10余9,被9除余8,被8除余7,求适合条件的最小正整数分析:依题意如果所求的数加上1,则 2020-07-14 …
被三整除的特征主要是为什么?如果可以的话请给我推理过程,如果嫌麻烦,请给我点提示,自己解出来了== 2020-07-16 …
同样一瓶饮料,便利店里2块钱,五星饭店里60块钱,很多的时候,一个人的价值取决於所在的位置为什么价 2020-07-19 …
用数学归纳法证明对於所有正整数p(n)都正碓!1+2+3+4+.+2^(n-1)=2^(2n-3) 2020-08-01 …
SFR列表中只有地址可以被8整除的功能可能按按位操,其他的地址只能按字节操作.我的理解是sfrP0= 2020-11-03 …
为什么奇数位的数字和与偶数位的数字和的差一定能被11整除?十进制中,六位数19xy87能被33整除, 2020-11-18 …
用0、3、4、5,四个数字,按下列要求排成没有重复数字的四位数,并请写出满足条件的这些四位数中最大的 2020-12-17 …