早教吧作业答案频道 -->数学-->
组合数使C(2,n)*C(8,1000-n)最大的n是多少?C(2,n)表示n个里面取2个
题目详情
组合数使C(2,n)*C(8,1000-n)最大的n是多少?C(2,n)表示n个里面取2个
▼优质解答
答案和解析
C(2,n)*C(8,1000-n)
= n*(n-1)/(2*1) * (1000-N) * (999-N) * ……(993-N) /(8*7*……*1)
分母固定,只需要分子
n*(n-1) * (1000-N) * (999-N) * ……(993-N) 最大即可
即
①
n*(n-1) * (1000-N) * (999-N) * ……(993-N) > (N-1)*(n-2) * (1001-N) * (1000-N) * ……(994-N)
n * (993-N) > (n-2) * (1001-N)
993N - N² > -N²+1003N-2002
2002 > 10N
N < 200.2
②
n*(n-1) * (1000-N) * (999-N) * ……(993-N) > (N+1)*N * (999-N) * (998-N) * ……(992-N)
(n-1) * (1000-N) > (N+1)* (992-N)
(N+1)* (N - 992 ) > (n-1) * (N - 1000)
10N > 1992
N > 199.2
综上,当N = 200时,C(2,n)*C(8,1000-n)取得最大值
= n*(n-1)/(2*1) * (1000-N) * (999-N) * ……(993-N) /(8*7*……*1)
分母固定,只需要分子
n*(n-1) * (1000-N) * (999-N) * ……(993-N) 最大即可
即
①
n*(n-1) * (1000-N) * (999-N) * ……(993-N) > (N-1)*(n-2) * (1001-N) * (1000-N) * ……(994-N)
n * (993-N) > (n-2) * (1001-N)
993N - N² > -N²+1003N-2002
2002 > 10N
N < 200.2
②
n*(n-1) * (1000-N) * (999-N) * ……(993-N) > (N+1)*N * (999-N) * (998-N) * ……(992-N)
(n-1) * (1000-N) > (N+1)* (992-N)
(N+1)* (N - 992 ) > (n-1) * (N - 1000)
10N > 1992
N > 199.2
综上,当N = 200时,C(2,n)*C(8,1000-n)取得最大值
看了 组合数使C(2,n)*C(8...的网友还看了以下:
正整数n(n>1)的三次方分解为m个连续奇数之和,n是质数的时候只有一种吗?正整数n,n是质数的时 2020-04-10 …
(2010•沈阳一模)若f(n)表示n2-2n+2(n∈N+)的各位上的数字之和,例如142-2× 2020-05-02 …
已知集合M={m|=k/4+1/4,k∈z},n={n=k/2+1/4,k∈z},则集合M,N的正 2020-05-16 …
已知集合M={1,2,3,…,n}(n∈N*),若集合A={a1,a2,a3,…,am}(m∈N* 2020-06-12 …
若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17,则f(14 2020-07-18 …
若f(n)为n2+1的各位数字之和(n∈N*).如:因为142+1=197,1+9+7=17,所以 2020-07-18 …
设集合Pn={1,2,...,n},n∈N*,记f(n)为同时满足下列条件的集合A的个数1、A⊆P 2020-07-20 …
设n∈N*,f(n)=1+12+13+…+1n,计算得f(2)=32,f(4)>2,f(8)>52 2020-07-22 …
定义:设有限集合A={x|x=ai,i≤n,i∈N+,n∈N+},S=a1+a2+…+an-1+a 2020-08-01 …
数学合情推理f(n)=1+1/2+1/3+.1/n(n属于N*),计算得f(2)=3/2,f(4)> 2020-11-21 …