早教吧作业答案频道 -->数学-->
比较难的求极限题目(只要思路)为什么lim(n趋向于无穷)1/n*{(n+1)(n+2).(n+n)}^(1/n)=4/e?
题目详情
比较难的求极限题目(只要思路) 为什么lim(n趋向于无穷)1/n*{(n+1)(n+2).(n+n)}^(1/n)=4/e?
▼优质解答
答案和解析
为了就算方便,令A=(1/n)[(n+1)(n+2)(n+3).(n+n)]^(1/n)
则 A=[(n+1)(n+2)(n+3).(n+n)/n^n]^(1/n)
={[(n+1)/n][(n+2)/n][(n+3)/n].[(n+n)/n]}^(1/n)
=[(1+1/n)(1+2/n)(1+3/n).(1+n/n)]^(1/n)
∴lnA=(1/n)[ln(1+1/n)+ln(1+2/n)+ln(1+3/n)+.+ln(1+n/n)] (两边取自然对数 )
==>ln[lim(n->∞)A]=lim(n->∞)(lnA) (应用对数函数的连续性)
=lim(n->∞){(1/n)[ln(1+1/n)+ln(1+2/n)+ln(1+3/n)+.+ln(1+n/n)]}
=∫(0,1)ln(1+x)dx (根据定积分定义得,符号∫(0,1)表示从0到1积分)
=[xln(1+x)]│(0,1)-∫(0,1)xdx/(1+x) (应用分部积分法)
=ln2-∫(0,1)[1-1/(1+x)]dx
=ln2-[x-ln(1+x)]│(0,1)
=ln2-(1-ln2)
=2ln2-1
=ln4-lne
=ln(4/e)
==>lim(n->∞)A=4/e (两边取反自然对数)
故 lim(n->∞){(1/n)[(n+1)(n+2)(n+3).(n+n)]^(1/n)}=4/e.
则 A=[(n+1)(n+2)(n+3).(n+n)/n^n]^(1/n)
={[(n+1)/n][(n+2)/n][(n+3)/n].[(n+n)/n]}^(1/n)
=[(1+1/n)(1+2/n)(1+3/n).(1+n/n)]^(1/n)
∴lnA=(1/n)[ln(1+1/n)+ln(1+2/n)+ln(1+3/n)+.+ln(1+n/n)] (两边取自然对数 )
==>ln[lim(n->∞)A]=lim(n->∞)(lnA) (应用对数函数的连续性)
=lim(n->∞){(1/n)[ln(1+1/n)+ln(1+2/n)+ln(1+3/n)+.+ln(1+n/n)]}
=∫(0,1)ln(1+x)dx (根据定积分定义得,符号∫(0,1)表示从0到1积分)
=[xln(1+x)]│(0,1)-∫(0,1)xdx/(1+x) (应用分部积分法)
=ln2-∫(0,1)[1-1/(1+x)]dx
=ln2-[x-ln(1+x)]│(0,1)
=ln2-(1-ln2)
=2ln2-1
=ln4-lne
=ln(4/e)
==>lim(n->∞)A=4/e (两边取反自然对数)
故 lim(n->∞){(1/n)[(n+1)(n+2)(n+3).(n+n)]^(1/n)}=4/e.
看了 比较难的求极限题目(只要思路...的网友还看了以下:
无穷级数,极限:用观察法判断数列是否收敛:yn:1,3/2,1/3,5/4,1/5,7/6,.;比较 2020-03-31 …
1.若数列an的极限=a则任意给定的ε>0,在a的ε邻域之外,数列an中的点()A.必不存在B.至 2020-04-27 …
利用夹逼准则求极限lim(n趋近无穷)n/n^2+1+n/n^2+2+...+n/n^2+n求n趋 2020-05-14 …
x趋近于无穷(1/x+2的1/x次幂)的x次幂求极限用两个重要极限那个配数的1+多少的那个方法怎么 2020-05-14 …
问几道数学极限的题!分全给了!1 ,lim x→无穷 {1 + 1/2 + 1/4 + …1 / 2020-05-16 …
关于极限的一个问题看到书上写X趋于正无穷和X趋于负无穷的极限要相等才算有极限可是我之前理解的是X趋 2020-06-23 …
lim,n趋于无穷,(1+1/2+1/4+...+1/2的N次方)的极限,limn趋于无穷(1+2 2020-07-16 …
1.x趋向于0,1/(x^2)*sin(1/x)是a.无穷小量b.无穷大量c.有界量非无穷小量d. 2020-07-31 …
下限负无穷反常积分收敛的判别方法书上的定理都是下限为常数上线正无穷那上限常数下限正无穷的要怎么判别 2020-08-02 …
关于极限的一个问题看到书上写X趋于正无穷和X趋于负无穷的极限要相等才算有极限可是我之前理解的是X趋于 2020-11-05 …