早教吧作业答案频道 -->其他-->
(2013•宜兴市二模)如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为2.函数y=-x+2图象与x轴交于点A,与y轴交于点B,点P为线段AB上一动点(包括端点).(1)
题目详情

2 |
(1)连接CO,求证:CO⊥AB;
(2)若△POA是等腰三角形,求点P的坐标;
(3)当直线PO与⊙C相切时,求∠POA的度数;
(4)当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系,并写出t的取值范围;设点M为线段EF的中点,试写出点M的运动轨迹,并直接写出点M运动轨迹的长度.
▼优质解答
答案和解析
(1)延长CO交AB于D,过点C作CG⊥x轴于点G.
∵函数y=-x+2图象与x轴交于点A,与y轴交于点B,
∴x=0时,y=2,y=0时,x=2,
∴A(2,0),B(0,2),
∴AO=BO=2.
又∵∠AOB=90°,
∴∠DAO=45°.
∵C(-2,-2),
∴∠COG=45°,∠AOD=45°,
∴∠ODA=90°.
∴OD⊥AB,即CO⊥AB;
(2)要使△POA为等腰三角形.
①当OP=OA时,P的坐标为(0,2),
②当OP=PA时,由∠OAB=45°,所以点P恰好是AB的中点,
所以点P的坐标为(1,1),
③当AP=AO时,则AP=2,
过点作PH⊥OA交OA于点H,
在Rt△APH中,则PH=AH=
,
∴OH=2-
,
∴点P的坐标为(2-
,
);
(3)如图2,当直线PO与⊙C相切时,设切点为K,连接CK,
则CK⊥OK.由点C的坐标为(-2,-2),
可得:CO=2
.
∵sin∠COK=
=
=
,
∴∠POD=30°,又∠AOD=45°,
∴∠POA=75°,
同理可求得∠POA的另一个值为45°-30°=15°;
(4)∵M为EF的中点,
∴CM⊥EF,
又∵∠COM=∠POD,CO⊥AB,
∴△COM∽△POD,
所以
=
,即MO•PO=CO•DO.
∵PO=t,MO=s,CO=2
,DO=
,
∴st=4.
但PO过圆心C时,MO=CO=2
,PO=DO=
,
即MO•PO=4,也满足st=4.
∴s=
,
∵OP最小值为
,当直线PO与⊙C相切时,∠POD=30°,
∴PO=
=
,
∴t的取值范围是:
≤t<
,
由(3)可得,点M的运动路线是以点Q为圆心(Q点为OC与⊙C的交点),
为半径的一段圆弧,
可得⊙C和⊙Q是两个等圆,可得∠GQK=120°
弧GQK为实际运动路径,弧长=
π.

∵函数y=-x+2图象与x轴交于点A,与y轴交于点B,
∴x=0时,y=2,y=0时,x=2,
∴A(2,0),B(0,2),
∴AO=BO=2.
又∵∠AOB=90°,
∴∠DAO=45°.
∵C(-2,-2),
∴∠COG=45°,∠AOD=45°,
∴∠ODA=90°.
∴OD⊥AB,即CO⊥AB;
(2)要使△POA为等腰三角形.
①当OP=OA时,P的坐标为(0,2),
②当OP=PA时,由∠OAB=45°,所以点P恰好是AB的中点,
所以点P的坐标为(1,1),
③当AP=AO时,则AP=2,
过点作PH⊥OA交OA于点H,

在Rt△APH中,则PH=AH=
2 |
∴OH=2-
2 |
∴点P的坐标为(2-
2 |
2 |
(3)如图2,当直线PO与⊙C相切时,设切点为K,连接CK,
则CK⊥OK.由点C的坐标为(-2,-2),
可得:CO=2
2 |
∵sin∠COK=
CK |
CO |
| ||
2
|
1 |
2 |
∴∠POD=30°,又∠AOD=45°,
∴∠POA=75°,
同理可求得∠POA的另一个值为45°-30°=15°;
(4)∵M为EF的中点,
∴CM⊥EF,
又∵∠COM=∠POD,CO⊥AB,
∴△COM∽△POD,
所以
CO |
PO |
MO |
DO |
∵PO=t,MO=s,CO=2
2 |
2 |
∴st=4.

但PO过圆心C时,MO=CO=2
2 |
2 |
即MO•PO=4,也满足st=4.
∴s=
4 |
t |
∵OP最小值为
2 |
∴PO=
| ||
cos30° |
2
| ||
3 |
∴t的取值范围是:
2 |
2
| ||
3 |
由(3)可得,点M的运动路线是以点Q为圆心(Q点为OC与⊙C的交点),
2 |
可得⊙C和⊙Q是两个等圆,可得∠GQK=120°
弧GQK为实际运动路径,弧长=
2
| ||
3 |
看了 (2013•宜兴市二模)如图...的网友还看了以下:
已知椭圆的中心在原点,它在X轴上的一个焦点与短轴两端点连线互相垂直,此焦点和X轴上的较近端点的距离 2020-05-16 …
已知椭圆中心在原点,它在x轴上的一个焦点与短轴两个端点的连线互相垂直,且此焦点和长轴上较近端点的距 2020-05-16 …
已知椭圆x^2/a^2+y^2/b^2=1上任意一点M(除短轴端点外)与短轴两点B1,B2的连线分 2020-05-20 …
已知椭圆X^2/a^2+Y^2/b^2=1上任意一点M(除短轴端点外)与端州两端点B1,B2的连线 2020-05-20 …
已知椭圆X^2/a^2+y^2/b^2=1上任意一点M与短轴两端点B1,B2的连线分别与X轴交于P 2020-05-20 …
若二次函数y=-x2+mx-1的图象与两端点为A(0,3),B(3,0)的线段AB有两个不同的交点 2020-06-06 …
求证椭圆上任意一点与过焦点点的弦的两端点连线的斜率之积为定值题目有误!!!求证椭圆上端点与过焦点点 2020-06-06 …
车削一带柄的球头,已知球的直径D=40mm,球与柄交界面与球端点的距离L=36mm,求柄部的直径d 2020-06-18 …
已知椭圆的中心在原点他在x轴上的一个焦点与短轴的两个端点B1B2已知椭圆的中心在坐标原点,它在X轴 2020-07-09 …
在开区间内连续,并且在左端点的右极限与右端点的左极限都存在,怎么证明在开区间内有界 2020-07-30 …